
	
	
	

KNL	Performance	
Comparison:	GPAW	

	
April	2017	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 	

	

	

2	

1. Compilation,	Setup	and	Input		
	

Compilation	

Standard	version	of	GPAW	should	be	compiled	using	the	Intel	compile	environment	with	Intel	
MKL	and	Intel	MPI,	e.g.	by	following	the	generic	installation	instructions	for	GPAW	
(https://wiki.fysik.dtu.dk/gpaw/install.html).		
	
In	this	comparison,	GPAW	version	0.11.0	was	used	and	the	results	from	the	64-core	KNLs	(Xeon	
Phi	7210)	were	compared	to	results	from	12-core	Haswell	CPUs	(Xeon	E5-2690v3).	A	single	KNL	
was	compared	to	a	full	node	(two	CPUs)	to	have	comparable	power	consumptions.	
	
Python+	
	
Since	ARCHER’s	KNL	system	has	Sandy	Bridge	login	nodes,	one	needs	to	build	GPAW	and	it’s	
underlying	Python	stack	in	two	steps.	First,	Python	and	the	other	dependencies	of	GPAW	should	
be	built	targeting	the	Sandy	Bridge	CPUs.	
	
module	swap	PrgEnv-cray	PrgEnv-intel/6.0.3	
export	CC=cc	
export	MPICC=cc	
export	CRAYPE_LINK_TYPE=dynamic	
export	CRAY_ADD_RPATH=yes	
	
module	swap	craype-mic-knl	craype-sandybridge	
	
#	…	install	Python	etc.	
	
GPAW	
	
After	Python	and	the	other	dependencies	are	built,	one	can	switch	to	target	the	KNLs	and	
proceed	to	build	GPAW.	
	
module	swap	craype-sandybridge	craype-mic-knl	
module	load	cray-memkind	
	
#	…	install	GPAW	
	
The	compiler	wrapper	(cc)	takes	care	of	using	the	correct	compiler	options	for	the	target	
architecture.	In	the	case	of	KNLs,	it	will	add	‘-xMIC-AVX512’	to	enable	the	AVX512	vector	sets	
supported	by	KNLs.	The	module	‘cray-memkind’	is	also	needed	to	get	support	for	the	high-
bandwidth	memory.	
	
TBB	&	hugepages	
	
To	improve	performance,	one	should	also	link	to	Intel	TBB	to	benefit	from	an	optimised	memory	
allocator	(tbbmalloc).	This	can	be	done	during	installation	or	at	run-time	by	setting	environment	
variable	LD_PRELOAD	to	point	to	the	correct	libraries,	i.e.	for	example:	
	
export	LD_PRELOAD=$TBBROOT/lib/intel64/gcc4.7/libtbbmalloc_proxy.so.2	
export	LD_PRELOAD=$LD_PRELOAD:$TBBROOT/lib/intel64/gcc4.7/libtbbmalloc.so.2	
	
It	is	also	beneficial	to	use	hugepages	together	with	tbbmalloc,	e.g.:	
	
module	load	craype-hugepages2M	
export	TBB_MALLOC_USE_HUGE_PAGES=1	
	

	

	

3	
	
	
As	a	side	note,	even	though	there	is	a	special	development	version	of	GPAW	aimed	at	MIC	
coprocessors	(git	branch	‘mic’),	it	is	actually	an	offload	approach	meant	for	KNCs	(and	potentially	
also	for	any	upcoming	coprocessors).	On	stand-alone	KNLs,	such	as	the	ones	in	the	ARCHER	KNL	
platform,	offloading	is	not	needed	nor	even	preferred.	

Setup	

The	ARCHER	KNL	nodes	were	used	in	cache	mode	(quad_100)	with	all	of	the	high-bandwidth	
MCDRAM	memory	used	as	an	additional	cache	between	the	processor	and	conventional	memory.	
	
The	results	from	the	64-core	KNLs	(Xeon	Phi	7210)	were	compared	to	results	from	12-core	
Haswell	CPUs	(Xeon	E5-2690v3).	A	single	KNL	was	compared	to	a	full	node	(two	CPUs)	to	have	
comparable	power	consumptions.	

Input	

Two	test	cases	(used	also	in	the	PRACE	Accelerator	Benchmark	for	GPAW)	were	used	to	study	
the	performance	of	GPAW.	One	of	the	benchmarks	(Carbon	nanotube)	is	aimed	at	smaller	
systems	(up	to	10	nodes)	while	the	other	one	(Copper	filament)	is	aimed	at	larger	systems	(up	to	
100	nodes).	Both	test	cases	were	used	to	study	the	performance	and	scaling	properties	of	GPAW	
up	to	8	KNL	nodes.	
	
The	benchmarks	are	available	at:	
		https://github.com/mlouhivu/gpaw-benchmarks.git	
	
Default	input	parameters	were	used	for	both	benchmarks.	
	
Case	1:	Carbon	nanotube	is	a	ground	state	calculation	for	a	carbon	nanotube	in	vacuum.	By	
default	it	uses	a	6-6-10	nanotube	with	240	atoms	(freely	adjustable)	and	serial	LAPACK	with	an	
option	to	use	ScaLAPACK.	Input	file:	carbon-nanotube/input.py	
	
Case	2:	Copper	filament	is	a	ground	state	calculation	for	a	copper	filament	in	vacuum.	By	
default	it	uses	a	2x2x3	FCC	lattice	with	71	atoms	(freely	adjustable)	and	ScaLAPACK	for	
parallelisation.	Input	file:	copper-filament/input.py	 	

	

	

4	

2. Performance	Data	
	
GPAW	runtimes	were	measured	using	two	benchmarks	(see	above	for	details)	on	64-core	KNLs	
(Xeon	Phi	7210)	and	12-core	Haswell	CPUs	(Xeon	E5-2690v3).	Only	the	runtime	for	the	SCF	cycle	
was	used	to	exclude	any	differences	in	the	initialisation	overheads.	A	single	KNL	was	compared	
to	a	full	node	(two	CPUs)	to	have	comparable	power	consumptions.	
	
Different	configurations	were	tested	to	find	optimal	performance	on	KNLs	for	both	benchmarks.	
Summary	of	the	results	for	Case	1	are	shown	in	Table	1	and	for	Case	2	in	Table	2.	As	can	be	seen	
from	the	results,	the	effect	of	switching	to	TBB	for	memory	allocation	is	either	negligible	(Case	1)	
or	only	minor	(Case	2)	without	the	additional	benefit	of	hugepages.	If	hugepages	are	enabled,	
performance	is	increased	for	both	benchmarks	regardless	of	the	size	of	the	hugepages.	
	
Table	1.	Average	runtime	in	seconds	for	Case	1	when	using	n	KNLs.	Data	shown	for	runs	using	standard	
memory	allocator	(default)	as	well	as	using	tbbmalloc	without	(TBB)	or	with	2M,	4M,	8M,	or	16M	hugepages	
(TBB	+	2M	etc.).	

n	 default	 TBB	 TBB	+	2M		 TBB	+	4M	 TBB	+	8M	 TBB	+	16M	
1	 329.2	 330.0	 319.9	 320.8	 321.1	 	
2	 215.5	 213.2	 206.6	 	 	 	
3	 	 145.5	 141.3	 	 	 	
4	 	 	 101.3	 101.2	 101.3	 101.4	
	
Table	2.	Average	runtime	in	seconds	for	Case	2	when	using	n	KNLs.	Data	shown	for	runs	using	standard	
memory	allocator	(default)	as	well	as	using	tbbmalloc	without	(TBB)	or	with	2M,	4M,	8M,	or	16M	hugepages	
(TBB	+	2M	etc.).	

n	 default	 TBB	 TBB	+	2M	 TBB	+	4M	 TBB	+	8M	
1	 341.0	 337.1	 323.4	 322.9	 323.4	
2	 	 177.7	 172.3	 171.0	 170.9	
4	 133.0	 130.7	 127.0	 127.0	 127.2	
8	 	 82.2	 80.0	 80.0	 80.2	
	
Additionally,	for	Case	1	the	effect	of	using	ScaLAPACK	instead	of	serial	LAPACK	(which	is	the	
default	in	Case	1)	was	tested,	but	only	degrading	performance	was	achieved.	
	
Since	the	size	of	the	hugepages	does	not	affect	performance,	results	for	runs	using	TBB	together	
with	2M	hugepages	were	chosen	for	a	comparison	with	Haswell	CPUs	(Table	3).	As	can	been	seen	
from	Table	3,	for	Case	1	the	performance	of	a	KNL	is	at	best	79.4%	of	that	of	a	Haswell	CPU	node.	
In	contrast,	for	Case	2	the	performance	of	a	single	KNL	is	125.5%	of	that	of	a	Haswell	CPU	node.	
When	using	more	KNLs	(or	nodes),	it	is	clear	that	KNLs	do	not	scale	as	well	as	CPUs	and	thus	
already	with	4	nodes/KNLs	Case	2	is	faster	on	CPUs.		
	
Nevertheless,	the	results	are	quite	comparable	and	depending	on	the	system	of	interest	KNLs	
may	offer	similar	(or	even	better)	performance	than	Haswell	CPUs.	
	
Table	3.	Comparison	of	runtimes	on	Haswell	CPU	nodes	(CPU)	and	KNLs	(KNL)	for	both	Case	1	and	Case	2.	
Average	runtimes	are	shown	for	1,	2,	4,	or	8	nodes	consisting	of	two	CPUs	or	a	single	KNL.	

	 	 1	 2	 3	 4	
Case	1	 CPU	 253.9	 136.2	 80.7	 55.6	
	 KNL	 319.9	 206.6	 141.3	 101.3	
Case	2	 CPU	 405.8	 195.2	 95.4	 60.3	
	 KNL	 323.4	 172.3	 127.0	 80.0	
	
	
	 	

	

	

5	

3. Summary	and	Conclusions	
	
GPAW	has	been	shown	to	achieve	similar	performance	on	KNLs	as	on	dual-CPU	Haswell	nodes,	
but	with	poorer	scaling	properties.	Depending	on	the	benchmark	the	performance	is	either	
slightly	worse	or	better	(from	79.4%	to	125.5%	for	a	single	KNL/node).	Unsurprisingly,	the	
higher	the	computational	burden	is,	the	better	KNL	performs	and	scales	when	moving	to	multiple	
processors.		
	
Based	on	the	two	benchmarks	tested,	it	is	recommended	for	optimal	performance	to	use	KNLs	for	
workloads	similar	to	Case	2	(Copper	filament)	if	one	is	limited	to	using	one	or	two	nodes.	

