
	
	
	

KNL	Performance	
Comparison:	HLBM		

	
August	2017	

	
G.N.	Barakos	and	M.A.	Woodgate	

George.Barakos@Glasgow.ac.uk						Mark.Woodgate@Glasgow.ac.uk	

	
	

CFD	Laboratory	
School	of	Engineering	
University	of	Glasgow	

Glasgow,	G128QQ,	Scotland,	Uk	
	
	
	
	
	
	
	
	
	
	
	

	 	



	

	

2	

1. Compilation,	Setup	and	Input		
	

Compilation	

The	 code	 was	 compiled	 using	 the	 Intel	 C++	 compiler	 on	 both	 KNL	 and	 Xeon	 nodes.	 Version	
17.0.0.098	 was	 used	 on	 the	 KNL	 while	 the	 default	 version	 15.0.2.164	 was	 used	 on	 the	 Xeon.	
Currently	we	have	no	resources	 left	on	 the	Xeon	 to	compare	 the	performance	of	 the	difference	
between	the	two	versions	of	the	Intel	compiler	but	it	is	not	expected	to	have	a	large	effect	on	the	
runtime	of	the	code.	The	compiler	optimization	option	used	was	-O3	and	the	compiler	directives	
for	 the	 source	 code	 where	 -D_NEW_ALLOC	 -D_METHOD2	 which	 is	 the	 most	 efficient	 memory	
layer	currently	implemented	in	the	parallel	code.	

Setup	

The	code	uses	MPI	for	parallel	communication	and	was	run	with	up	to	24	processes	per	node	on	
the	 Xeon	 and	 64	 processes	 per	 node	 on	 the	KNL.	 The	 performance	 across	 nodes	 shows	 linear	
speedup	from	the	Xeon	but,	as	it	is	currently	only	possible	to	run	on	two	KNL	nodes,	there	are	not	
enough	 data	 points	 to	 draw	 any	 conclusions	 on	 the	 performance	 across	 nodes	 for	 the	 KNL	
system.	The	memory	option	used	on	 the	KNL	 system	was	quad_100	where	 all	 the	MCDRAM	 is	
used	to	cache	the	main	memory.		

Input	

The	 benchmark	 was	 a	 three-dimensional	 counter	 rotating	 vortex	 problem	 with	 periodic	
boundary	conditions	in	all	three	directions.	The	lattice	size	was	121x241x241	and	this	was	split	
into	the	number	of	MPI	processes	to	be	used.	For	example,	the	single	process	run	only	one	block	
and	 for	 the	 case	with	 16	 processes	 the	 lattice	was	 split	 into	 16	 blocks	 each	 of	 size	 61x61x61.	
Using	only	a	single	block	per	processes	give	the	highest	possible	performance	due	to	minimizing	
the	halo	data	exchanges.	
	
It	should	be	noted	that	this	problem	size	requires	less	than	16GB	of	memory	and	so	all	the	data	
will	be	cached	using	the	MCDRAM.	

	 	



	

	

3	

2. Performance	Data	
Figure	 1	 shows	 the	 parallel	 performance	 of	HLBM	while	 running	 on	ARCHERs	 Xeon	 computer	
nodes.	The	scaling	within	a	node	shows	a	marked	drop	off	in	parallel	performance	when	running	
on	more	 than	4	 cores	per	node	 –	8	 cores	 in	 total.	 This	 is	 because	 the	method	 is	 very	memory	
bandwidth-intensive	and	general	memory	bandwidth	has	not	kept	pace	with	the	ever-increasing	
number	of	cores	on	CPUs.	However,	 the	performance	across	nodes	shows	 linear	speedup	going	
from	1	node	(24	cores)	to	64	nodes	(1536	cores).	This	is	because	the	number	of	lattice	points	per	
process	dropped	 from	288,000	when	on	 a	 single	node	 to	 just	4500	when	on	64.	This	means	 a	
much	 larger	 percentage	 of	 the	 data	 could	 be	 stored	 in	 the	 cache	 which	 increases	 the	 core	
performance,	 by	 about	 twenty	 percent.	 This	 gain	 in	 sequential	 performance	 offsets	 the	
communication	costs.	

	
	

Figure	1:	The	speed	up	curve	for	running	HLBM	within	and	across	ARCHER	Xeon	computer	nodes	–	
(Two	2.7GHz	12-core	E5-2697	v2	Processors)	

	
The	 code	was	 also	 evaluated	 on	 nodes	 configured	 in	 cache	mode	with	 all	 16GB	of	 the	 on-chip	
Multi-Channel	 DRAM	 (MCDRAM)	 used	 to	 cache	 the	 system	memory,	 and	 job	 sizes	were	 small	
enough	 so	 all	 the	 data	 could	 fit	 within	 the	 cache.	 The	MCDRAM	 is	 a	 high-bandwidth	memory	
which	fits	well	with	 the	needs	of	 a	method	 like	HLBM.	The	 results	 can	be	 seen	 in	figure	2	and	
although	the	single	core	performance	of	a	KNL	processor	was	three	times	slower,	mainly	due	to	
the	 lower	clock	speed,	 the	parallel	 scaling	was	much	better	at	high	number	of	 cores.	Hence	24	
processes	on	an	ARCHER	Xeon	compute	node	run	the	same	as	32	on	a	KNL	node.	This	results	in	
the	KNL	nodes	being	80%	faster	when	both	nodes	are	full	utilized.		
	
	

	
Figure	2:	The	speedup	curve	for	running	HLBM	within	an	ARCHER	KNL	processor	(model	7210)	

running	at	1.3GHz	

Table	4	shows	the	performance	difference	between	the	quad_100	configuration	and	the	quad_0	
configuration.		The	effect	of	having	no	caching	between	the	cores	and	the	main	memory	results	in	
just	 over	 doubling	 the	 runtime	 of	 the	 code	 and	 shows	 the	 importance	 of	 having	 all	 the	 main	
memory	cached	for	a	code	with	low	ratio	of	memory	accesses	to	floating	point	operations.	
	



	

	

4	
	
	
	
	
	
	
	
	
	

Table	1:	Performance	data	for	running	on	different	numbers	of	cores	on	an	ARCHER	Xeon	compute	
node.	

	
KNL	quad_100	Cores	 CPU	time	per	iteration	

1	 6.772s	
2	 3.503s	
4	 1.743s	
8	 0.880s	
16	 0.442s	
32	 0.226s	
64	 0.126s	

Table	2	:	Performance	data	for	running	on	different	numbers	of	cores	on	an	ARCHER	KNL	compute	
node	in	quad_100	configuration.	

	
Number	of	Nodes	 Xeon	Nodes	(24	Cores)	 KNL	Nodes	(64	Cores)	

1	 0.21953s	 0.12835s	
2	 0.10560s	 0.06350s	
4	 0.05050s	 0.03305s	
8	 0.02586s	 0.01729s	

Table	3:	Comparison	of	scaling	across	nodes	for	ARCHER	Xeon	and	KNL	nodes.	

	
KNL	Configuration	 Quad_100	 Quad_0	

CPU	time	per	iteration	 0.1286s	 0.2942s	
Table	4:	Comparison	of	performance	on	a	since	KNL	compute	node	in	two	different	configurations.	

The	same	test	case	has	also	been	benchmarked	on	two	other	HPC	systems.	The	first	was	ARCHIE-
WeST	 (Academic	 and	 Research	 Computer	 Hosting	 Industry	 and	 Enterprise	 in	 the	 West	 of	
Scotland)	were	the	276	compute	nodes	are	2	Intel	Xeon	X5650	2.66	Ghz	CPU	with	6	cores	each	
and	48	GB	of	memory	connected	together	by	4xQDR	Infiniband	interconnect.	
The	second	was	through	early	access	 to	 the	Cirrus	HPC	service	which	has	280	computer	nodes	
containing	 two	 2.1	 GHz,	 18-core	 Intel	 Xeon	 E5-2695	 (Broadwell)	 series	 processors,	 256	 GB	 of	
memory	and	is	connected	with	a	single	FDR		infiniband	interface		with	a	bandwidth	of	54.5	Gb/s.		
	
It	 should	be	noted	 that	 the	 single	 compute	node	 case	 scales	differently	 from	 the	ARCHER	case	
since	the	default	behaviour	of	the	queue	of	 fully	 loading	the	first	CPU	before	running	processes	
on	 the	 second	 was	 not	 overridden.	 It	 was	 found	 when	 testing	 on	 ARCHER	 than	 the	 parallel	
efficiency	of	running	on	either	N	cores	of	a	single	CPU	or	N	cores	on	both	CPU	was	very	similar	
and	hence	the	halving	of	the	CPU	time	per	iteration	when	going	from	6	to	12	cores	on	ARCHIE-
WeST	and	18	to	36	cores	on	Cirrus.	
	
Table	5	shows	the	performance	of	HLBM	on	ARCHIE_WeST.	The	single	core	performance	is	35%	
slower	than	an	ARCHER	core	and	scaling	is	not	as	good	with	only	a	3%	increase	in	performance	
when	increasing	the	number	of	cores	used	on	a	CPU	from	4	to	6.	When	running	across	multiple	
nodes	the	scaling	shows	super	linear	speedup	as	the	size	of	the	blocks	decrease	as	the	problem	
size	remains	constant.		 	

Number	of	Xeon	Cores	 CPU	time	per	iteration	
1	 2.1249s	
2	 1.0721s	
4	 0.56952s	
8	 0.34484s	
16	 0.23538s	
24	 0.21953s	

	



	

	

5	
ARCHIE-WeST		Cores		

(Nodes	used)	
CPU	time	per	iteration	

1	(1)	 2.6361s	
2	(1)	 1.4362s	
4	(1)	 1.0449s	
6	(1)	 1.0124s	
12	(1)	 0.5252s	
24	(2)	 0.2647s	
48	(4)	 0.1342s	
96	(8)	 0.06389s	
192	(16)	 0.03121s	
384	(32)	 0.01623s	

Table	5:	Performance	of	HLBM	on	different	numbers	of	cores	and	nodes	on	an	ARCHIE-WeST	

	
Table	6	shows	the	performance	of	HLBM	when	run	on	the	Cirrus	HPC	system.	Although	the	Cirrus	
nodes	are	slower	(2.1Ghz	vs	2.7	GHz)	the	overall	single	core	performance	is	very	similar.	Cirrus	
also	 scales	 better	 within	 the	 CPU.	 However,	 just	 like	 an	 ARCHER	 node	 after	 8	 processes	 are	
running	within	a	CPU	 there	 is	very	 little	performance	gain.	This	means	 for	HLBM	there	 is	very	
little	advantage	to	be	gaining	from	using	more	than	16	cores	per	computer	node	which	is	just	half	
the	number	available.	The	code	 is	actually	slower	when	running	with	 the	maximum	number	of	
cores	 possible.	 The	 internode	 performance	 is	 the	 same	 as	 the	 other	 HPC	 systems	 and	 shows	
excellent	scaling	up	to	many	thousands	of	cores.	
	

Cirrus	Cores	(Nodes	used)	 CPU	time	per	iteration	
1	(1)	 2.0763s	
2	(1)	 1.0325s	
4	(1)	 0.5376s	
8	(1)	 0.3501s	
16	(1)	 0.3244s	
18	(1)	 0.3345s	
36	(1)	 0.1669s	
72	(2)	 0.7711s	
144	(4)	 0.04013s	
288	(8)	 0.02011s	
576	(16)	 0.01042s	
1152	(32)	 0.005224s	
2304	(64)	 0.002108s		

Table	6:	Performance	of	HLBM	on	different	numbers	of	cores	and	nodes	on	Cirrus.	

3. Summary	and	Conclusions	
HLMB	shows	very	similar	behavior	on	all	the	HPC	systems	it’s	been	benchmarked	on.	There	is	a	
marked	 difference	 to	 the	 scaling	 within	 a	 compute	 node,	 compared	 to	 the	 scaling	 between	
compute	nodes.	On	modern	machines	with	many	cores	per	CPU	only	a	small	subset	of	the	cores	
can	 effectively	 be	 used	 due	 to	 the	 low	 floating-point	 operation	 count	 of	 the	 Lattice	 Boltzmann	
method.	Indeed,	on	Cirrus	only	about	40%	of	the	core	can	effectively	be	used.	This	does	present	
an	opportunity	of	possibly	being	able	increase	the	floating-point	workload	without	increasing	the	
CPU	time	per	iteration	thought	say	a	more	accurate	and	hence	computationally	more	expensive	
equilibrium	function	or	the	addition	better	sub-grid	scale	turbulent	models.	
	
Although	 the	single	core	performance	of	 the	KNL	 is	much	slower	 than	 that	of	 the	Xeon,	mainly	
due	to	the	much	slower	clock	speed,	the	performance	per	node	was	80%	greater.	Since	HLBM	is	
aimed	 at	 the	 computation	 of	wakes	 in	 real	 time	 any	 performance	 gain	 is	welcome.	Due	 to	 the	
smaller	lattice	sizes	used	in	this	type	of	application	the	situation	where	there	is	not	enough	cache	
memory	 on	 the	 KNL	 nodes	will	 not	 arise.	 For	 larger	 lattices	which	 cannot	 be	 fully	 cached	 the	
performance	advantage	of	the	KNL	nodes	my	well	be	lost.	



	

	

6	
	
A	 compact	 openMP	version	of	 the	 code	 is	 also	 being	 tested	on	 the	KNL	nodes	which	has	 been	
highly	optimized	to	reduce	the	work	load	but	loop	unrolling	removing	redundant	calculations	etc.	
However,	due	all	these	optimizations	it	fails	to	take	advantage	of	the	vector	processing	units	with	
the	KNL	node.	Different	computational	kernels	are	being	tested	to	see	if	it	possible	to	rework	the	
code	so	it	can	make	use	of	the	VPUs.	The	basic	code	using	just	the	compiler	to	the	optimization	is	
slower	 in	 number	 of	 lattice	 updates	 per	 second	 but	much	 faster	 looking	 at	 raw	 floating	 point	
operations.	It	is	thought	there	could	be	a	version	in	between	these	two	extremes	which	could	be	
faster	than	the	current	optimized	version.		It	has	already	been	determined	that	a	simple	padding	
of	the	workspace	so	that	the	inner	loop	always	has	memory-aligned	access	is	detrimental	to	the	
overall	performance	of	the	code.	
	


