
Communication and I/O masking for increasing the performance of

Nektar++

eCSE 02-13 technical report

Rupert Nash, Simon Clifford, Chris Cantwell, David Moxey, and Spencer Sherwin

May 24, 2016

Abstract

This report summarises the work done and results obtained during this eCSE project to improve the
Nektar++ spectral/hp element framework. The project targetted two main areas for improvement: I/O
and threading.

For I/O we added support for the PETSc DMPlex sub-library for unstructured meshes. Unfortunately
there were issues in the library and despite working with the developers, could not get this functional in
the time available. We also added support for HDF5 for field data.

Regarding threading, we modified the Nektar++ threading library to allow multiple independent
threads, providing a general solution to I/O and inter-process communication masking. We implemented
an alternative conjugate-gradient algorithm that allows overlap between computation and communica-
tion. We investigated the shortcomings of some MPI implementations regarding how they wait for other
processes.

1 Profiling and load imbalance

1.1 I/O performance

We selected two main ways of testing I/O performance. First, to run Nektar++ in its usual mode where
it actively solves a set of equations and then writes the output, while being profiled by the MAP tool from
Allinea. Second, to create a simple benchmarking executable that simply loads in an existing FLD file and
writes it out a number of times recording the the time for each experiment. This can optionally be profiled
with MAP also.

The first testing dataset is a mesh of a pair of intercostal arterial branches in the descending aorta, as
described in Cantwell et al. [1] and available as supplementary material S6. This uses the incompressible
Navier-Stokes solver (IncNavierStokes) with a Reynolds number of 300 and represents a typical medium-
sized simulation for Nektar++. The mesh contains approximately 60,000 elements (prisms and tetrahedra).

This problem ran efficiently up to 32 nodes (768 cores) before the low number of elements per rank
became problematic. In figure 1 we show an Allinea MAP profile of the program’s execution on 16 node
(384 cores). The total run time was 60s and, overall, 2% of this is spent doing IO operations. The profile
naturally divides into two sections, a setup phase (the factory function SessionReader::CreateInstance)
and an execution phase.

For this problem, 19% of run time is spent in initialisation, overwhelmingly in the main setup function
SessionReader::PartitionMesh(). In figure 2 we show a MAP profile of this function only. This spends
37% of its time reading and parsing the input file with TinyXML, 26% of its time doing communication,
10% of its time destroying TinyXML objects, and 9% of its time performing filesystem metadata operations.

Writing a single complete checkpoint took approximately 75ms. Given that each timestep took on average
240ms, this is an acceptable overhead at this scale. Because the initialisation becomes such a dominant part

1

Figure 1: Allinea MAP profile of an IncNavierStokesSolver run on 384 cores

of the run time at larger scales (see below), we chose not to examine field output in in this way, but to use
the benchmarking tool described below.

The second dataset is a more refined mesh, using curved elements, of aorta. It contains just over 150,000
elements. For this problem, we use the advection-diffusion-reaction solver (ADRSolver) to estimate mass
transport. We ran this on 1 up to 64 nodes (24–1536 cores) under Allinea MAP. The timings for initialisation
and solution are shown in figure 3. The solution time shows excellent strong scaling until 768 cores, when
each core has less than 200 elements on average. At this point the system appears to still have good load
balance, but the amount of computation is no longer enough to hide the communication required.

The initialisation shows a similar breakdown into constituent parts to the smaller problem, however at
larger core-counts the time spent communicating become much more significant: increasing from 50% (24
cores) to 98% (1536 cores).

To better understand the performance on field data I/O we wrote a simple command-line tool to bench-
mark this. The tool, FieldIOBenchmarker, simply reads a Nektar++ field file and writes it back to the
filesystem using Nektar’s FieldIO class. We ran this tool on a complete checkpoint field from the large
aorta problem above. The results of this are plotted in figure 4. The initial decrease in time is because each
rank has a smaller amount of data to convert to XML and write. At larger core counts, the communication
overhead of describing which elements will be written to each processor’s output file becomes dominant.

2

Figure 2: Detailed MAP profile of time spent in function calls during initialisation

10#

100#

1000#

10# 100# 1000# 10000#

Solve#)me#/#s#

Init#)me#/#s#

Figure 3: Scaling of ADRSolver on the large aorta problem. Blue shows the solution time and red shows the
initialisation time. Number of cores is shown on the x-axis.

3

0"

0.05"

0.1"

0.15"

0.2"

0.25"

0.3"

0.35"

0.4"

0.45"

10" 100" 1000" 10000"

Time/s"

Figure 4: Initial time to write a checkpoint (150k elements). Number of cores shown on the x-axis.

4

2 Streamlining of XML

2.1 Mesh format

The Nektar++ XML format is flexible, but rather verbose and, like all XML-based formats, only supports
sequential access. At the top level, the file begins with a <NEKTAR> tag, which must contain a <GEOMETRY> tag,
specifying the dimensionality of the elements (DIM) and the space in which they lie (SPACE). The <GEOMETRY>
element then contains the following child elements:

• <VERTEX> - this has a list of child elements <V ID="$I">$X $Y $Z</V>, where $I is a unique integer
ID for the vertex, and $X, $Y and $Z are floating point numbers (the z-coordinate being omitted in a
2D space).

• <EDGE> - this has a list of child elements <E ID="$I">$V1 $V2</E>, where where $I is a unique integer
ID for the edge and <$V1> and <$V2> are vertex IDs from the previous section.

• For 3D elements, <FACE>. This has a list of child elements, the type depending on whether it is a
triangle (<T>) or a quad (<Q>). These are given an ID attribute similar to above and then list three
or four (respectively) edges from the previous section. In the case of 2D elements, this tag is called
<ELEMENT> and the next one is omitted.

• <ELEMENT> has a list of primitives defining the solution domain. The type can be tetrahedron (<A>),
pyramid (<P>), prism (<R>), or hexahedron (<H>). These have an ID attribute similar to above and
then list the required number of face IDs.

• <CURVED> has a list of all non-straight edges. Each child tag <E> has the following attributes: ID a
unique integer ID; EDGEID the ID of the edge being curved; NUMPOINTS the number of points param-
eterising the curve; and TYPE a string identifying the interpolation scheme. Then, enclosed by this
tag follow NUMPOINTS× SPACE floating point numbers specifying the point required, laid out as X1 Y1

[Z1] X2 Y2 [Z2]

• <COMPOSITE> Each child tag <C> specifies a union of previously defined objects, typically the elements
and the boundary faces.

• <DOMAIN> this tag refers to one or more composites and defines the solution domain.

2.2 Plan

The profiling done above clearly showed that one of the key bottlenecks for simulation setup was communica-
tion done to distribute the input data, rather than the file reading in itself or the partioning with ParMETIS.
Based on this and discussions with one of the PETSc contributors, we decided to use the PETSc DMPlex

module [5, 6] to describe and (de)serialise meshes.
The DMPlex system takes a very flexible, abstract approach to describing a mesh, using a directed,

acyclic graph, with vertices, edges, faces and cells all being nodes on the graph. An example of the graph
for a single tetrahedron is shown in figure 5. Arbitrary data can be attached to any of these entities, such as
coordinates to the vertices or curvature data to the edges. Using an external, widely supported library such
as PETSc to manage this data on our behalf is a clear benefit in terms of maintenance, especially when the
roadmap includes PETSc support for parallel mesh decomposition and loading. The DMPlex framework also
has potential benefits in geometric preconditioning and mesh manipulation (by making easy queries such as
“return all the cells that share a face with cell X”).

The plan for implementation was to first create a DMPlex output module for the MeshConvert tool which
is used to convert input data from other formats to Nektar’s own format. Second, create a reader module for
MeshConvert to ensure that the other operations (refinement etc) that it can perform are possible directly
on the new mesh format. Third, implement a new MeshPartition::ReadGeometry method that can accept
a DMPlex object rather than a TinyXML object.

5

2.1 Fluidity
The primary user application in our work is Fluidity, an
open source unstructured finite element code that uses mesh
adaptivity to accurately represent a wide range of scales in
a single numerical simulation without the need for nested
grids. Fluidity is used in a number of di↵erent scientific areas
including geophysical fluid dynamics, computational fluid
dynamics, ocean modelling and mantle convection. Fluidity
implements various finite element and finite volume discreti-
sation methods and is capable of solving solving the Navier-
Stokes equation and accompanying field equations in one,
two and three dimensions.

Previous optimisation e↵orts have highlighted that file I/O,
in particular during model initialisation, presents a severe
performance bottleneck when running on large numbers of
processes [11]. The primary reasons for this are a o↵-line
domain partitioning and the need to store each partition
using a file-per-process strategy.

2.2 DMPlex
PETSc’s ability to handle unstructured meshes is centred
around DMPlex, a data management object that encapsu-
lates the topology of unstructured grids to provide a range of
functionalities common to many scientific applications. As
shown in Figure 1, DMPlex stores the connectivity of the
associated mesh as a layered directed acyclic graph (DAG),
where each layer (stratum) represents a class of topological
entities [14, 16]. This flexible yet e�cient representation pro-
vides an abstract interface for the implementation of mesh
management and manipulation algorithms using dimension-
independent programming.

2 3

4

1

9

14
12

11
10

13

Vertex and edge numbering

0

5 6 7 8

9 10 11 12 13 14

1 2 3 4

Topological connectivity

Figure 1: DAG-based representation of a single tetrahedron
in DMPlex.

DMPlex stores data by associating data with points in the
DAG, allowing an arbitrary data size for each point. This
can be e�ciently encoded using the same AIJ data structure
used for sparse matrices. This scheme is general enough
to encompass any discrete data layout over a mesh. The
association with points also means that data can be moved
using the same set of scalable primitives that are used for
mesh distribution.

DMPlex’s internal representation of mesh topology also pro-
vides an abstraction layer that decouples the mesh from the
underlying file format and thus allows support for multi-
ple mesh file formats to be added generically. At the time
of writing DMPlex is capable of reading input meshes in
Exodus II, CGNS, Gmsh, Fluent-Case and MED formats.
Moreover, DMPlex provides output routines that generate

solution output in HDF5-based XDMF format, while also
storing the DMPlex DAG connectivity alongside the visual-
isable solution data to facilitate checkpointing [3].

In addition to a range of I/O capabilities DMPlex also pro-
vides parallel data marshalling through automated paral-
lel distribution of the DMPlex [15] and the pre-allocation
of parallel matrix and vector data structures. Mesh par-
titioning is provided via internal interfaces to several par-
titioner libraries (Chaco, Metis/ParMetis) and data migra-
tion is based on PETSc’s internal Star Forest communica-
tion abstraction (PetscSF) [3]. Additionally, DMPlex is de-
signed to provide the connectivity data and grid hierarchies
required by sophisticated preconditioners, such as geomet-
ric multigrid methods and “Fieldsplit” preconditioning for
multi-physics problems, to speed up the solution process [4,
6].

2.3 Mesh Reordering
Mesh reordering techniques represent a powerful performance
optimisation that can be utilised to increase cache coherency
of the matrices required during the solution process [10, 12,
21]. The well-known Reverse Cuthill-McKee (RCM) algo-
rithm, which can be used to reduce the bandwidth of CSR
matrices, is implemented in PETSc allowing DMPlex to
compute the required permutation of mesh entities directly
from the domain topology DAG. The resulting permutation
can then be applied to any discretisation derived from the
stored mesh topology to improve the cache coherency of the
associated CSR matrices.

3. FLUIDITY-DMPLEX INTEGRATION
Initial mesh input has been a scalability bottleneck in Flu-
idity due to the o↵-line mesh partitioning step. As illus-
trated in Figure 2a, the current preprocessor module uses
Zoltan [8], which use ParMetis [13] for graph partitioning,
to partition and distribute the initial simulation state to the
desired number of processes before writing the partitioned
mesh and data to disk, allowing the main simulation to read
the pre-partitioned data in a parallel fashion.

Fluidity’s parallel mesh initialisation routines, however, rely
on a file-per-process I/O strategy that require large num-
bers of individual files when running the application at scale.
This has been shown to put significant pressure on the meta-
data servers in distributed filesystems, such as Lustre or
PVFS, which ultimately has a detrimental e↵ect on scala-
bility when using su�ciently large numbers of processes [11].

3.1 Parallel Simulation Start-up
One of the objectives of this work, in addition to enhacing
functionality and usability, is to alleviate Fluidity’s start-up
bottleneck by utilising DMPlex’s mesh distribution capa-
bilities to perform mesh partitioning at run-time. For this
purpose, as shown in Figure 2b, a DMPlex topology ob-
ject is created from the initial input mesh and immediately
partitioned and distributed to all participating processes, al-
lowing Fluidity’s initial coordinate field to be derived from
the DMPlex object in parallel. From the initial coordinate
mesh all further discretisations and fields in the simulation
state are then derived using existing functionality.

Figure 5: DAG-based representation of a single tetrahedron in DMPlex, from Lange et al. [5]

2.3 MeshConvert

The first step was to add CMake configuration options to add the necessary compilation and linking flags to
use PETSc. Since the PETSc library requires initialisation, exactly once, before any PETSc API calls, we
created a simple environment class that the user must instantiate near the start of their program (taking care
to protect the call from any other threads). By taking a RAII (resource allocation is instantiation) approach
and keeping track of which instance “owns” the PETSc environment through a flag, the environment can be
cleanly shut down through a call to PetscFinalize() in the wrapper’s destructor.

We chose to separate the mesh format into two parts: the core unstructured mesh data into the DMPlex
format (i.e. the XML elements <VERTEX>, <EDGE>, <FACE>, and <ELEMENT>) while initially at least keeping
the the Nektar-specific data (<CURVED>, <COMPOSITE>, <DOMAIN>) in the existing XML. The XML file will
remain the top level file and will contain the filename of the new DMPlex file.

The tool has a simple, in-memory representation of the mesh that closely matches the Nektar++ XML
format. This also maps reasonably easily onto the form required by DMPlex. However the DMPlex imple-
mentation must make two traverses through the mesh data structures. First one must set the size of the
“chart” (the entire graph) and then set the so-called “cone” size of each entity, the cone being the set of
lower-dimension entities that comprise it (e.g. the cone of a face is the set of its edges). Then an API call
will allocate memory for storing the links of the graph. The second pass then sets the indices of the cone
for each element, being careful to ensure the proper mapping from DMPlex’s single global index space to
Nektar’s per-entity-type index spaces. Finally, the coordinates of the vertices can be added to the plex using
a PetscSection object.

PETSc’s documentation claims that DM objects can be serialised using PETSc’s viewer objects, most
interestingly using the HDF5 format. However while this worked on trivial test cases (e.g. a square subdivided
into two triangles) this failed on more realistic cases with cryptic errors. Detailed debugging revealed that
the DMPlex serialisation routines were specialised for meshes with only a single type of face and element
and had not implemented the full range of element shapes needed.

We worked with some of the PETSc contributors to add the required functionality, but could not get this
working in the time available. We took the decision to pause this until the DMPlex functionality is available.

3 Implementation of HDF I/O support

Nektar++ writes output as fields into an XML-based format. In parallel, this is written as one file per
MPI rank, plus an associated metadata file describing which elements are written to which rank’s file. This
operation as well as field import is performed by instances of the FieldIO class. In write mode, this accepts
a vector of FieldDefinitions, a vector of data vectors to write and some further metadata. The field
definitions is a structure that describes the mapping between mesh elements with the expansion bases across
them and the one-dimensional list of floating point numbers supplied.

6

The XML format begins with the usual XML declarations and a <NEKTAR> tag. This has a child
<Metadata> that includes provenance data and solver-specific infomation such as the simulated time and
other parameters. Then a number of <ELEMENTS> tags follow. Each one of these corresponds to a FieldDefinitions
and vector of data pair. The field definitions are encoded as attributes of the <ELEMENTS> tag:

• FIELDS="u,v,w,p"

• SHAPE="Prism"

• BASIS="Modified A,Modified A,Modified B"

• NUMMODESPERDIR="UNIORDER:5,5,5"

• ID="24134,24170-24174,24186,..."

The elements are output in groups of uniform shape and expansion basis. The IDs of all mesh elements are
listed.

As part of this work, which required adding more parallel communication calls, we realised that the
extant abstraction of MPI call (or in the serial case trivial no-operation equivalents) was relatively time
consuming to add extra calls and argument types to, requiring a lot of boiler-plate. To ease this burden, the
old member functions, which relied on C++ overloading to select the correct implementation, were replaced
with templated equivalents. These use standard argument deduction coupled with a traits class template1 to
select the correct MPI Datatype. Partial specialisations for std::vector and Nektar::Array objects were
also added. With these changes, Nektar can support communication of all built in datatypes immediately
and of user defined types by specialising the new CommDataTypeTraits class template.

3.1 Implementation

To enable multiple options for field I/O, we refactored the single FieldIO class into an abstract base class
with two concrete subclasses: FieldIOXml and FieldIOHdf5. Instantiation was delegated to a factory object,
in keeping with the Nektar++ style. All uses thoughout the code base were moved to the new factory. HDF5
files are, as one would expect from the name, hierarchical. So called groups can contain other groups or
datasets. A dataset is a core object for storing data and must have both extent and type information
associated with it. Both groups and datasets may have attributes, which are named objects that can be
treated like datasets but they may only store small amounts of data.

Initially, we chose to make a fairly direct translation from the XML format to HDF5, leaving the file-
per-rank plus an info file in place. As a first step, we designed a simple object-oriented wrapper around
the HDF5 API. We were unable to use the included C++ bindings as this is explicitly not supported in
conjunction with parallel operations. However the design was strongly influenced by this. We took a RAII
approach, i.e. objects “close” their associated HDF object when they destruct to ensure easy management
of resources. We implemented a minimal set of the HDF5 functionality anticipated by this work and added
to it as needed.

We used an enhanced version of the type traits technique used for MPI to avoid a proliferation of
member functions to (de)serialise data to attributes and datasets. This class had to have factory static
member functions to create the HDF5 datatype objects needed as well as functions to perform any necessary
type conversions.

To deal with the metadata, we wrote a simple abstraction for writing hierarchical attribute data (TagWriter)
that has two operations: adding a child node or adding a named string attribute. The concrete implemen-
tations for XML (HDF5) mapped these concepts to creating a child element (creating a group) and creating
child element with enclosed text (creating a string attribute).

The element data is then treated in a similar manner to the XML, creating a single group for each output
item, the field definitions data being added as attributes of the group, with the exception of the ID data,
which, due to its potentially large size, is added as a dataset. The data is naturally added as a dataset.

1see e.g. http://accu.org/index.php/journals/442

7

The deserialisation process also mimics the XML approach but mapped to HDF5 concepts. We had to
implement iterator classes for both attributes and “links” (i.e. groups or datasets) to support this. A further
complication was allowing the client code to open a file without having to know whether it was XML or
HDF5 based. This was implemented through a factory function that inspects the first few bytes of the file
for the HDF5 “magic number” and then creates the appropriate subclass.

3.2 Benchmarking results

Using the FieldIOBenchmarker tool described above, we performed scaling tests of the new implementation,
using the larger aorta dataset (150k elements). In figures 6 and 7 we show the results of write and read
performance, respectively, for both the XML and HDF5 formats. In both cases, the figures show comparable
results. At low core counts, the time to completion decreases slightly for HDF5 and very significantly
for XML. This is probably due to a roughly constant file access time (approx 50ms) combined with a
decreasing amount of work per rank. Since the XML parsing/construction and (de)compression is much
more demanding, this explains the large differences between the two formats. At larger core counts, both
modes take significantly longer to complete the I/O. This is likely due to contention on the shared filesystem
metadata servers.

0"

0.05"

0.1"

0.15"

0.2"

0.25"

0.3"

0.35"

0.4"

0.45"

0.5"

10" 100" 1000" 10000"

Ti
m
e%
/%
s%

Cores%

Write%performance%scaling%

XML"

HDF5"

Figure 6: Average time (of ten tests) to perform a single field I/O write operation for the large aorta dataset.

3.3 Parallel file access

We next proceeded to implement parallel reading and writing of HDF5 files. The extension to this case
initially seemed quite straightforward: for each field type, as each ranks knows how many elements and data
values it must write, perform a collective operation to compute the offsets and the total size, then perform
a parallel HDF5 write (by opening the file with the correct operations). In parallel HDF5, operations such
as group and dataset creation are collective and require communication and possibly multiple processes
accessing the metadata servers at once. This is known to be a bottleneck on some systems, so instead we
chose to use a well-known patten and perform the file structure creation on a single rank in serial mode,
before reopening the file collectively and performing the writes in parallel.

Unfortunately, we had not realised that, in general, the set of FieldDefinitions on each rank is not
consistent across all ranks. Further, the field definition is very complex in order to allow Nektar’s great

8

0"

0.05"

0.1"

0.15"

0.2"

0.25"

0.3"

0.35"

0.4"

0.45"

0.5"

10" 100" 1000" 10000"

Ti
m
e%
/%
s%

Cores%

Read%performance%scaling%

XML"

HDF5"

Figure 7: Average time (of ten tests) to perform a single field I/O read operation for the large aorta dataset.

flexibility. We attempted to implement the necessary reduction operation, to ensure that the root process
had a consistent summary of all global field definitions, but could not produce a working implementation in
the time available.

Since the end of this eCSE project, however, a European Horizon 2020 project, ExaFLOW, with EPCC
and Imperial College among the partners has started, which includes effort to improve Nektar++’s scalability
towards the exascale. As part of this, with have a preliminary implementation of this that is currently
undergoing testing.

4 Masking of communication

The general problem to solve is to recover time (wall-clock time) that would otherwise be spent waiting for
communications tasks, such as MPI message passing or I/O, to finish. Without masking the CPU is waiting
2 during communications; the goal is to have it continue to run code while the communication takes place.
Subsequently there will come a point in the code where execution must stop until the communication is
finished. For example, the result from an MPI::AllReduce is needed, or data must be read from a file that
is being written to.

We chose to implement the communication and I/O masking using the previously implemented threading
library in Nektar++. This provides a ThreadManager abstract class that creates long-lived instances of
threads that pull tasks (instances of subclasses of ThreadJob) from a common job queue and execute them.
A thread with no jobs to execute sleeps, consuming no CPU. A Wait method to synchronise the threads, so
that all the ThreadManager’s child threads must finish before the master thread can progress is also provided.
The concrete implementation uses the boost::thread framework. The library was modified to provide
multiple named ThreadManagers, overseen and accessed through a Singleton ThreadMaster class. Each
ThreadManager can schedule, queue jobs for, and wait for its threads independently of other ThreadManagers.

2Which may not be the same as idling.

9

4.1 Masking communication during the conjugate-gradient step

The thread library provides a general approach to overlapping computation with waiting for communication.
Work is ongoing to find suitable parts of the code to apply the library, bearing in mind the caveats and
pitfalls mentioned below. In some cases the original algorithms can be reformulated to allow greater overlap.

As an example, one of the iterative CG algorithms to solve Ax = b used in Nektar++, due to Chronopou-
los and Gear [2, 3], is shown in algorithm 1. It is a minor modification of the original CG algorithm that
reduces the number of communications and improves memory management.

Algorithm 1 Original Nektar++ CG algorithm

Input: x0, A, b,K

1: r0 ← b−Ax0;
2: q−1 ← 0, p−1 ← 0, β−1 ← 0
3: Solve for w0 in Kw0 = r0
4: s0 ← Aw0

5: ρ0 ← (r0, w0);µ0 ← (s0, w0)
6: α0 ← ρ0/µ0

7: for i = 0, 1, 2, . . . do
8: pi ← wi + βi−1pi−1

9: qi ← si + βi−1qi−1

10: xi+1 ← xi + αipi
11: ri+1 ← ri − αiqi
12: if xi+1 accurate enough then quit
13: Solve for wi+1 in Kwi+1 = ri+1

14: si+1 ← Awi+1

15: ρi+1 ← (ri+1, wi+1), µi+1 ← (si+1, wi+1)
16: βi ← ρi+1/ρi
17: αi+1 ← ρi+1/(µi+1 − ρi+1βi/αi)
18: end for

Output: xi+1

The inputs are A, b, and an initial guess x0. K is the preconditioner. The matrix A might be represented
sparsely or as a function that computes y ← Ax. In an MPI parallel job the matrix multiplies are effectively
spread across the processors in a way that is highly parallel. However, the dot products at lines 16 and 17
are global reductions, and require that each processor contributes its data to the product. These then are
synchronisation points in the algorithm. As each processor reaches this point in the code it must wait until
the last processor reaches it before it may continue. Only in the unlikely situation that each processor has
the same amount of work will there be no wasted time.

In algorithm 1 the two dot products can be performed at the same time (i.e. in one MPI global reduction),
so there is only one synchronisation point. However, there is nothing that can be overlapped with this
communication: β and α are required immediately in the next step of the iteration.

An alternative algorithm from Ghysels and Vanroose [4] is shown in algorithm 2 (a discussion of it and
similar algorithms is found at [7]). The inputs are A, b, an initial guess x0, and the preconditioner M . There
are now three global vector dot products per iteration (lines 3,4, and 7), however they are independent
and can all be merged into a single communication. They can also be overlapped with the calculations on
lines 5 and 6. The increase in computational effort to generate the vectors on lines 13 to 16 is ameliorated
by observing that the two vector operations on each line can be performed in a single loop, reducing the
number of memory accesses.

This algorithm was added to the Nektar++ library. At the start of the program a ThreadManager is
initialised for this task, with one child thread. A ThreadJob subclass is created with the code implementing
lines 5 and 6. To avoid complexity it was decided that all MPI calls (such as in lines 3, 4 and 7) would take

10

Algorithm 2 Pipelined CG

Input: x0, A, b,M, ε

1: r0 ← b−Ax0, u0 ←M−1r0, w0 ← Au0
2: for i = 0, 1, 2, . . . do
3: γi ← (ri, ui)
4: δi ← (wi, ui)
5: mi ←M−1wi

6: ni ← Ami

7: if (‖ri‖2 / ‖r0‖2 ≤ ε) then quit
8: if (i = 0) then
9: βi ← 0, αi ← γi/δi

10: else
11: βi ← γi/γi−1, αi ← γi/(δi − βiγi/αi−1

12: end if
13: si ← wi + βisi−1, ri+1 ← ri − αisi
14: pi ← ui + βipi−1, xi+1 ← xi + αipi
15: qi ← mi + βiqi−1, ui+1 ← ui − αiqi
16: zi ← ni + βizi−1, wi+1 ← wi − αizi
17: end for

Output: xi

place from a master thread. At the start of each iteration of the for loop the instance of the ThreadJob

subclass is sent to the ThreadManager with references to mi, M
−1, wi, ni, and A. The waiting thread is

woken and immediately starts executing the code on lines 5 and 6. Meanwhile, the master thread continues,
and starts the MPI calls for the communication steps of the global dot-products. For a short while many of
the MPI processes will be mostly occupied in wait states freeing3 them to work on the child thread. Once
the master thread has finished the MPI communication it calls the Wait method, forcing synchronisation.
The master will only progress once the child thread has finished executing (if it has already finished then
the master continues immediately).

4.2 Issues with communication masking

Adding threading to any application brings a novel set of problems. Many are associated with data sharing:
apart from the trivial “all reading” situation, if threads access the same memory locations data corruption
may happen in non-deterministic ways. Similarly, one thread releasing dynamic memory (say by a C++
destructor) may cause a thread that is still accessing that data to segfault, read garbage data, overwrite
(newly re-acquired) data, or continue normally. Libraries may be thread-unsafe, or may implement thread-
safety by serialising all use. The C++ STL is (generally) thread-safe, but does not protect the programmer
from using its tools in thread-unsafe ways. For example, pushing an element to the end of a std::vector

may cause an automatic resizing of the vector, which will invalidate all pointers, references, and iterators to
this vector held by other threads.

An unexpected problem is that many MPI implementations use busy wait. When an MPI process is
waiting for other processes to respond in some way it may sleep and wait for the operating system to wake it
when the response arrives. Alternatively it may poll, continually checking to see if the reponse has arrived.
The former approach is kinder to other processes (and threads) on the system, as a process that is sleeping
is not scheduled on the run queue, and so consumes no CPU. Polling, on the other hand, means that the
CPU is 100% occupied in checking for the response and is only available to other processes or threads in
a shared fashion. The current wisdom is that any serious MPI program will be running on a dedicated
machine, where each processor has only one process allocated to it. By polling, the process will respond as

3But see the next section

11

fast as possible to any response, reducing latency. This means that with busy wait overlap is impractical.
Some MPI implementations offer idle waiting (where the process sleeps, or polls a certain number of times,
then sleeps) as an option. However, this has made gathering data on how beneficial the masking is difficult.

Acknowledgement

This work was funded under the embedded CSE programme of the ARCHER UK National Supercomputing
Service (http://www.archer.ac.uk).

References

[1] C D Cantwell, D Moxey, A Comerford, A Bolis, G Rocco, G Mengaldo, D De Grazia, S Yakovlev, J E
Lombard, D Ekelschot, B Jordi, H Xu, Y Mohamied, C Eskilsson, B Nelson, P Vos, C Biotto, R M
Kirby, and S. J. Sherwin. Nektar++: An open-source spectral/hp element framework. Comput. Phys.
Commun., 192:205–219, July 2015.

[2] A T Chronopoulos and C W Gear. s-step iterative methods for symmetric linear systems. J. Comput.
Appl. Math., 25:153–168, 1989.

[3] James W Demmel, Michael T Heath, and Henk A van der Vorst. Parallel Numerical Linear Algebra.
Acta Numerica, 2:111–197, 1993.

[4] P Ghysels and W Vanroose. Hiding global synchronization latency in the preconditioned Conjugate
Gradient algorithm. Parallel Computing, 40:224–238, 2014.

[5] Michael Lange, Matthew G Knepley, and Gerard J Gorman. Flexible, Scalable Mesh and Data Manage-
ment using PETSc DMPlex. arxiv Condensed Matter e-prints, May 2015.

[6] Michael Lange, Lawrence Mitchell, Matthew G Knepley, and Gerard J Gorman. Efficient mesh manage-
ment in Firedrake using PETSc-DMPlex. arxiv Condensed Matter e-prints, June 2015.

[7] Fangfang Liu, Chao Yang, Yiqun Liu, Xianyi Zhang, and Yutong Lu. Reducing Communication Overhead
in the High Performance Conjugate Gradient Benchmark on Tianhe-2. In Distributed Computing and
Applications to Business, Engineering and Science (DCABES), 2014 13th International Symposium on,
pages 13–18. IEEE, 2014.

12

http://www.archer.ac.uk

