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1 Introduction 
This project aimed at substantially improving: 

1. the computational performance (reducing runtimes while improving parallel 

scalability from small to very high core counts) 

2. ease-of-use and portability (adopting portable I/O standards)  

of the COSA harmonic balance (HB) Navier-Stokes (NS) computational fluid 

dynamics solver, the key tool of the COSA finite volume compressible NS Fortran 

code. 

 

COSA is used for accurate unsteady aerodynamic analysis of fluid flows and 

fluid/structure interaction problems (e.g. flow-induced structural vibrations) in 

renewable energy, mechanical and aeronautical engineering.  

 

COSA is being developed for a wide class of low-, high- and multi-speed flows, with 

strong emphasis on open rotor unsteady aerodynamics.  The HB method is a nonlinear 

frequency-domain technique that reduces the runtime for calculating periodic 

solutions of ordinary differential equations with respect to the conventional time-

marching approach.  

 

The reduction occurs because the HB method, unlike the conventional time-domain 

approach, determines directly the periodic solution of interest, bypassing lengthy 

transient effects. In aerodynamic performance, structural integrity and aero-acoustic 

assessments, the use of the HB NS technology rather than the conventional time-

domain (TD) NS method to accurately determine periodic flows of turbomachinery 

blade rows, vibrating aircraft wings, and helicopter rotors was shown to reduce 

runtimes by one to two orders of magnitude.   

 

In the case of bladed rotors, the HB speed-up is particularly high due to the possibility 

of using multi-frequency periodicity boundary conditions enabling the modelling of 

flow past a single blade rather than the whole rotor.  The HB NS COSA solver is 

pioneering the development and exploitation of this technology in wind turbine (WT) 

engineering worldwide.  

 

COSA is a structured multi-block NS code featuring a steady, a TD and a HB solver, 

all using a finite volume space-discretisation and an efficient multigrid integration. 

All three solvers are parallelised using MPI. 

 

In this project, the speed of the HB solver has been substantially increased by 

developing and parallelising multi-frequency periodicity boundary conditions into 

COSA.  The resulting additional speed-up with respect to the existing implementation 

equals the number of rotor blades (3 to 20, depending on the application).   

 

To improve the code ease-of-use without damaging parallel scalability, a dynamic 

parallel load-balancing capability has been developed, ensuring the number of grid 

blocks (geometric partitions) assigned to each MPI process takes into account block 

size, enabling the MPI processes to use different numbers of blocks to ensure a 

comparable amount of work for all processes.  This simplifies and accelerates the grid 

generation phase, presently constrained by the requirement for all blocks having equal 

size, as the original code allocates equal numbers of blocks to MPI processes (or as 
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equal as possible depending on the number of blocks in the simulation and the 

number of processes used).  

 

The scalability of the parallel I/O in the original code is limited, and the I/O wall-

clock time is a significant portion of the overall runtime for the large core counts 

required for complex 3D simulations. To achieve a scalability of the I/O operations 

comparable to that of the computing part, the code I/O has been restructured and re-

parallelized making more efficient use of MPI I/O routines.  

 

Furthermore, we have investigated increased MPI communication performance by 

overlapping communications with computations, and we have optimised the serial 

performance by addressing vectorisation issues.  

 

The ease-of-use and portability of the code has be addressed by creating tools to 

convert the existing I/O format used in the code to other CFD I/O standards, such as 

CGNS and TecPlot I/O.  We investigated writing these formats directly from the 

simulation code, but the performance of these libraries proved not to be adequate, so 

this functionality has been retained as external tools for the time being. 

 

The rest of this document will describe COSA in more detail and characterise its 

existing performance (Sections 2 and 3).  We then go on to discuss the technical work 

undertaken in more detail (Sections 4 to 7) and finally summarise the overall 

functionality and improvement that has been achieved in the project in Section 8. 

2 Simulation Functionality 
COSA supports steady, time-domain (TD), and frequency-domain (harmonic balance 

or HB) solvers, implementing the numerical solution of the Navier-Stokes (NS) 

equations using a finite volume space-discretisation and multigrid (MG) integration.  

It is implemented in Fortran and has been parallelised using MPI, with each MPI 

process working on a set of grid blocks (geometric partitions) of the simulation.   

 

In the HB solver there exists an additional dimension with respect to the steady and 

TD solvers, which can be viewed as a harmonic varying from 1 to Nh, a user specified 

number of elemental flow harmonics.   However, the code solve directly such 

elemental harmonics, but rather Nh equally time-spaced snapshots of the required 

periodic flow field, linked to the Nh elemental harmonics using a Fourier transform.   

 

The code is structured so that the core computational kernels can, for the most part, be 

reused for the steady solvers and HB simulations, with HB simply requiring an outer 

loop over the Nh snapshots using the steady solver kernels. The other main difference 

between the HB and the steady solver is that all large arrays (e.g. solution and residual 

at all grid cells) of the HB solver have an additional dimension over harmonics.  

 

3 Initial performance 
Prior to any optimisation work it’s important to understand the current performance of 

the code.  In this section we aim to capture the performance and scaling of COSA on 

a representative simulation, and evaluate where performance problems exist.  The 



 5 

simulation parameters (COSA input files) used to collect the performance results 

presented in this report is included in Appendix A at the end of the report. 

 

We have performed simulations using 2 different simulations, both harmonic balance, 

one with 800 blocks and 3,689,952 grid cell (NREL5MW_GRID32_HB_SECTOR), 

the other with 16,384 blocks and 47,071,232 grid cells 

(NACA0015_HB_plu_mb16384).   

 

We use a further simulation (NACA0015_Ogrid_UNBALANCED) to test the load 

balancing functionality and performance issues investigated during this project.  This 

has 256 blocks and 951,808 grid cells, and there are two different versions, one where 

blocks have been carefully constructed to ensure they have similar numbers of grid 

cells, and the other where the block sizes are taken directly from a mesh generation 

package.  In the unbalanced grid (where block sizes are taken directly from the mesh 

generator) there is around a 7x difference in number of cells between large and small 

blocks. 

 

All benchmark data in this document was collected using a version of COSA 

compiled with the Intel compiler (version 15.0.2.164) on ARCHER using mkl 

(version 11.2.2).  Benchmarks are run using a Lustre stripe count of -1 for the 

directories each simulation is run from. 

 

For benchmarking data we have run each benchmark 3 times and present the fastest 

run in the graphs.  For all the collected data there was a less than 5% difference 

between the fastest and slowest runs, so data variability (error bars) are omitted from 

the graphs. 

 

3.1 Process Counts 

Given the MPI decomposition functionality in COSA is designed to distribute blocks 

across processes as evenly as possible the following is a list of sensible process counts 

for both sample simulations 

 

• 256 ����	
: 32, 64, 128, 256 

• 800 ����	
: 20, 40, 80, 100, 200, 400, 800 

• 16384 ����	
: 1024, 2048, 4096, 8192, 16384 

 

The 256 and 800 block simulation will run on a single node of ARCHER, the 16384 

block simulation is too large to fit into memory on a single node so we have started 

our benchmarking from 1024 cores (43 nodes). 
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3.2 Basic performance 

 
Figure 1: Runtime for 100 iterations of 16,384 block simulation, with and without output I/O 

enabled. 

 

 
Figure 2: Runtime for 100 iterations of 800 block simulation, with and without output I/O 

enabled. 

 

It is evident from Figure 1 and Figure 2 that COSA scales very well, even up to 

maximum block counts, when output I/O is disabled (writing check-pointing and data 

files).  However, especially for the large test case, it is evident that I/O really 

dominates performance, and even for the smaller simulation the I/O is costing around 

40% of the runtime for the highest core counts. 

 

It should be noted that we have only run for small numbers of iterations of the 

algorithm for these benchmark cases, meaning I/O output will have a larger impact of 

performance than when a normal simulation is run (where thousands or tens of 

thousands of iterations are used).   However, it does illustrate the issue with I/O in 

these simulations. 
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3.3 Load balance performance 

Part of this project is to investigate and optimise the load balance of the domain 

decomposition approach used.  Therefore, we have also benchmarked the code using 

a simulation (NACA0015_Ogrid_UNBALANCED) where load balance is an issue.   

 

The simulation is run using the standard decomposition strategy in COSA, which 

aims to give an equal (or as close to equal as possible) number of blocks to each MPI 

process.  The blocks are pre-defined in the input file. 

 

Figure 3 outlines the parallel performance of this simulation alongside the ideal curve 

(which is calculated taking the time on 32 cores and dividing the runtime by 2 every 

time the number of cores doubles).  It is evident from the graph that there is a 

significant loss of parallel performance when running with an unbalance 

decomposition. 

 

 
Figure 3: Runtime for 1000 iterations of 256 unbalanced block simulation, with output I/O 

enabled. 

 

3.3.1 Profiling data 

Investigations of the detailed performance of COSA were undertaken with CrayPat to 

identify the subroutines consuming the most computational time for a given run, the 

amount of MPI communications performed, and the time spent in I/O for the same 

run.   

 

Profiling result for the small test case: 

 

100 processes 
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        |          |     Samp | Samp% | Function 

        |          |          |       |  PE=HIDE 

        

 100.0% | 61,775.2 |       -- |    -- |Total 
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||  19.0% | 11,747.3 |  3,485.7 | 23.1% |vflux_ 

||   8.8% |  5,418.5 |    857.5 | 13.8% |roflux_ 

||   6.1% |  3,764.0 |  1,434.0 | 27.9% |muscl_ 

||   4.7% |  2,909.9 |  1,479.1 | 34.0% |q_face_ 

||   4.1% |  2,555.1 |    364.9 | 12.6% |tridi_ 

||   3.9% |  2,380.3 |  1,327.7 | 36.2% |bresid_ 

||   3.7% |  2,302.4 |  1,445.6 | 39.0% |muscl_bi_ 

||   3.2% |  1,972.9 |  1,146.1 | 37.1% |rtst_ 

||=================================================== 

|  19.0% | 11,742.3 |       -- |    -- |MPI 

||--------------------------------------------------- 

||  11.1% |  6,831.8 | 33,844.2 | 84.0% |mpi_waitany 

||   5.3% |  3,262.0 |    910.0 | 22.0% |MPI_FILE_WRITE 

|==================================================== 

 

800 processes 
  Samp% |     Samp |    Imb. |  Imb. |Group 

        |          |    Samp | Samp% | Function 

        |          |         |       |  PE=HIDE 

        

 100.0% | 10,461.0 |      -- |    -- |Total 

|--------------------------------------------------- 

|  56.3% |  5,889.8 |      -- |    -- |USER 

||-------------------------------------------------- 

||  13.1% |  1,375.1 |   464.9 | 25.3% |vflux_ 

||   6.5% |    683.7 |   132.3 | 16.2% |roflux_ 

||   4.5% |    469.1 |   199.9 | 29.9% |muscl_ 

||   3.4% |    355.9 |   192.1 | 35.1% |q_face_ 

||   3.1% |    320.7 |    82.3 | 20.4% |tridi_ 

||   2.8% |    293.7 |   193.3 | 39.7% |bresid_ 

||================================================== 

|  41.4% |  4,333.4 |      -- |    -- |MPI 

||-------------------------------------------------- 

||  14.2% |  1,482.2 | 1,111.8 | 42.9% |MPI_FILE_WRITE 

||  10.5% |  1,093.8 | 4,369.2 | 80.1% |mpi_waitany 

||   8.4% |    877.7 |   885.3 | 50.3% |mpi_file_open 

||   7.0% |    730.0 |   802.0 | 52.4% |MPI_BARRIER 

|=================================================== 

 

4 WP1 Parallel multi-frequency periodicity boundary 
conditions (MFPBCs)  

 

Milestone: the HB runtime analysis of rotor flows will be reduced by a factor Nb. This will be 

verified by comparing the runtime of the HB analysis of the provided test case using the 

complete rotor grid without MFPBCs and that using a single grid sector with MFPBCs. 

 

Theoretically, multi-frequency periodic boundary conditions (MFPBCs) reduce 

runtimes of the HB analysis of rotor flows by a factor equal to the number of rotor 

blades Nb.  For some particular applications when the flow field is periodic, it is 
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sufficient to simulate the flow only within one repeating region of the whole 

computational domain. 

 

The interaction of repeating region with the remaining physical domain is provided 

through the periodic boundary conditions. We focus on rotational periodicity, where 

one periodic boundary is transformed into the other periodic boundary by the 

coordinate rotation. Figure 4 represents one repeating region or sector, which depicts 

two rotationally periodic boundaries, (boundary 1 and boundary 2), where θ is the 

rotation angle between these two periodic boundaries, and Ω  is constant angular 

velocity given. 

 
Figure 4: Rotational periodic boundaries 

 

For this work, we have assumed that the rotational axis coincides with the z-axis, and 

all grid nodes are matching. The data exchange between two periodic blocks is done 

across the patches on the block surfaces, and it follows exactly the same principle that 

involves cut boundary condition. 

 

Steady periodicity boundary conditions depend only on the rotation of the coordinate 

system, means that all scalar quantities (density, pressure, turbulent kinetic energy, 

and specific dissipation rate) are invariant with respect to the coordinate rotation. 

 

When such variables are copied from the interior domain of first block to halo cells 

(parts of the data arrays used to store boundary data) in the second block and vice 

versa, they remain unchanged.  

 

Moreover, all vector quantities (velocity or gradients of scalars) need to be 

transformed when data exchange between two periodic blocks takes place. The 

rotation matrix of transformation is the following: 
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Periodic flows in turbomachinery applications satisfy a certain spatial periodicity in 

addition to temporal periodicity, meaning that the flow about one blade is the same as 

the flow about neighbouring blade with a time shift.  These boundary conditions must 

be applied in the frequency-domain. 

 

These MFPBC have been implemented in COSA, and benchmarked against running 

the same simulations without such boundary conditions (where the full domain has to 

be simulated rather than one rotor).    

 

 

5 WP2 I/O re-parallelisation and standardisation 
 
Milestone: the standardised parallel I/O functionality of COSA will have a parallel 

scalability comparable to that of the computing part of the code. This will be assessed by 

repeating all I/O scalability tests …, and verifying that the mean deviation of the new I/O-

only scalability curve from the ideal speed-up curve is of the same order of magnitude as that 

of the computation-only curve. 

 

The current I/O functionality in COSA is parallel, at least on output, with a restart file 

produced periodically (for checkpoint and restart purposed) and data (also known as 

flowtec) files produced at the end of the simulation (along with a handful of other 

smaller files).   

 

These output files are write on a per-block basis, with data from consecutively 

ordered blocks being adjacent in the files.  As such, each process can write its blocks 

to different parts of the output file (be it restart or flowtec) in parallel without 

interfering with each other.  This means I/O is undertaken in parallel, but using non-

collective MPI I/O functionality. 

 

Furthermore, the existing parallel I/O is structured to replicate serial I/O, enabling 

files written by the parallel code to be read by the serial version of the code, or the 

parallel code to read restart files generated by the serial version of the code.  The 

Fortran I/O functionality used in the serial code exploited unformatted Fortran file 

format.  This is a binary file format where each line of data is preceded and finished 

by a record of the number of bytes stored on the line. 

 

For the large simulation (16384 blocks) we presented benchmark data on in Section 3 

the restart file is of the order of 40GB and there are 9 flowtec files each around 

6GB in size.  The smaller simulation (800 blocks) has a restart file of 

approximately 3 GB with nine flowtec files of around ½ GB each. 
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5.1 I/O Functionality 

 

An example of the structuring of I/O to replicate the Fortran file written by the serial 

code is the original code for writing the restart blocks, which loops over each block a 

process owns and then does the following: 

 
do n = 0,2*nharms 

  write(fid)((((q(i,j,k,ipde,n),i=-1,imax1),j=-

1,jmax1),k=-1,kmax1),ipde=1,npde) 

end do 

 

This has been translated into parallel I/O functionality using MPI I/O as follows: 

 
call setupfile(fid,disp,MPI_INTEGER) 

call mpi_file_write(fid, linelength, 1, 

     &        MPI_INTEGER, MPI_STATUS_IGNORE, ierr) 

disp = disp + integersize 

 
do ipde=1,npde 

  do k=-1,kmax1 

    do j=-1,jmax1 

      call setupfile(fid,disp,MPI_DOUBLE_PRECISION) 

      call mpi_file_write(fid, q(-1,j,k,ipde,n), imax+3, 

&          MPI_DOUBLE_PRECISION,MPI_STATUS_IGNORE, ierr) 

      disp = disp + doublesize*(imax+3) 

    end do 

  end do 

end do 

 

 
call setupfile(fid,disp,MPI_INTEGER) 

call mpi_file_write(fid, linelength, 1, 

     &        MPI_INTEGER, MPI_STATUS_IGNORE, ierr) 

disp = disp + integersize 

 

The above code requires npde*(kmax1+2)*(jmax1+2) MPI-I/O operation for 

each harmonic in the simulation, plus two extra operations to write the line lengths 

before and after the data, with each operation adding an overhead to the I/O. 

 

The routine setupfile simply moves the file pointer for a given process to ensure 

they write the data at the correct place in the file (using MPI_FILE_SEEK) 

 

The restart file includes the halo data from the blocks (the extra data in the data arrays 

used to store data from adjacent blocks required for the simulations), hence the array 

indices spanning from, for instance, -1 to imax1 rather than 1 to imax.  For the 

restart file (which is used for continuing simulations) this is acceptable as the halo 

data is required for continuing simulations.  However, for the output data files (the 

flowtec files) this halo data is not required, so flowtec files are written without the 

halo data. 
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The original flowtec file functionality is of the following form (note, each 

harmonic is written to a separate flowtec file): 

write(line1,'(''ZONE T="arturo",I='',i4,'', J='',i4,'', 

K='',i4,'',F=POINT, DT=(SINGLE SINGLE SINGLE DOUBLE 

DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE)'')') 

imax1,jmax1,kmax1 

write(fid(n),'(a)') line1 

do k=0,kmax 

  do j=0,jmax 

    do i=0,imax 

      write (fid(n),10) 

(var1(i,j,k,ipde,n),ipde=1,npde),(var2(i,j,k,ipde,n),ipde

=1,npde) 

     end do 

   end do 

 end do 

10 format(3e16.8,7e22.14) 
 

Which was translated into MPI I/O as follows: 

 
write(line1,'(''ZONE T="arturo HB, mode 

'',i2,''",I='',i4,'' 

&,J='',i4,'',F=POINT, DT=(SINGLE SINGLE DOUBLE DOUBLE 

DOUBLE DOUBLE 

& DOUBLE DOUBLE)'')') n,imax1,jmax1 

call setupfile(fid(n),disp,MPI_INTEGER) 

call mpi_file_write(fid(n),integersize,1, 

&    MPI_INTEGER,MPI_STATUS_IGNORE,ierr) 

disp = disp + integersize 

call setupfile(fid(n),disp,MPI_INTEGER) 

call mpi_file_write(fid(n),typechar,1, 

&    MPI_INTEGER,MPI_STATUS_IGNORE,ierr) 

disp = disp + integersize 

call setupfile(fid(n),disp,MPI_INTEGER) 

call mpi_file_write(fid(n),integersize,1, 

&    MPI_INTEGER,MPI_STATUS_IGNORE,ierr) 

disp = disp + integersize 

call setupfile(fid(n),disp,MPI_INTEGER) 

call mpi_file_write(fid(n),integersize,1, 

&    MPI_INTEGER,MPI_STATUS_IGNORE,ierr) 

disp = disp + integersize 

call setupfile(fid(n),disp,MPI_INTEGER) 

call mpi_file_write(fid(n),111,1, 

&    MPI_INTEGER,MPI_STATUS_IGNORE,ierr) 

disp = disp + integersize 

call setupfile(fid(n),disp,MPI_INTEGER) 

call mpi_file_write(fid(n),integersize,1, 

&    MPI_INTEGER,MPI_STATUS_IGNORE,ierr) 

disp = disp + integersize 

call setupfile(fid(n),disp,MPI_INTEGER) 

call mpi_file_write(fid(n),111*charactersize,1, 
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&           MPI_INTEGER,MPI_STATUS_IGNORE,ierr) 

disp = disp + integersize 

call setupfile(fid(n),disp,MPI_CHARACTER) 

call mpi_file_write(fid(n),line1,111, 

&    MPI_CHARACTER,MPI_STATUS_IGNORE,ierr) 

disp = disp + charactersize*111 

call setupfile(fid(n),disp,MPI_INTEGER) 

call mpi_file_write(fid(n),111*charactersize,1, 

&    MPI_INTEGER,MPI_STATUS_IGNORE,ierr) 

     disp = disp + integersize 

 

do k=0,kmax 

  do j=0,jmax 

    do i=0,imax 

      do ipde=1,npde 

         tempdata(tempindex) = var1(i,j,k,ipde,n) 

         tempindex = tempindex + 1 

      end do 

      do ipde=1,npde 

         tempdata(tempindex) = var2(i,j,k,ipde,n) 

         tempindex = tempindex + 1 

      end do 

    end do 

  end do 

end do 

call setupfile(fid(n),disp,MPI_DOUBLE_PRECISION) 

call mpi_file_write(fid(n),tempdata(1),datasize, 

&    MPI_DOUBLE_PRECISION,MPI_STATUS_IGNORE,ierr) 

disp = disp + datasize*doublesize 

 

Note, the large number of mpi_file_write and setupfile operations prior to 

tempdata being written are simply to write the block header including the size of 

the block into the file. 

 

It is evident for both the restart and flowtec files far more MPI I/O operations 

are happening than is efficient, maintaining compatibility with the serial file format 

used by COSA is impacting I/O performance. 

 

It is also noted that non-collective MPI I/O functionality is being used.  MPI I/O has 

the potential to provide more efficient I/O if collective I/O functionality are used 

(where all processes are writing the same amount of data to the file at the same time).  

Ideally, we would implement this in COSA to improve I/O performance.  However, 

as each block owned by a process may be different in size, and each process may have 

a different number of blocks, it is not possible to write collective I/O operations to do 

this. 

 

It could be possible to define MPI datatypes for each block, and then write each block 

in a single operation using collective MPI I/O routines, but some global book keeping 

would be required to ensure each process has the same number of blocks and to revert 

to non-collective routines for none matching numbers of blocks, which would add 



 14

communication overheads to the I/O operations. Therefore, we decided in this project 

to continue using non-collective I/O functionality but to optimise the way I/O is 

performed to improve performance. 

 

5.2 I/O Optimisation 

 

The first I/O optimisation we implemented was to move from writing each row of the 

restart file data in a single I/O operation to writing each harmonic for a whole block in 

a single I/O operations.  i.e. from this: 

 
do n = 0,2*nharms 

  call setupfile(fid,disp,MPI_INTEGER) 

  call mpi_file_write(fid, linelength, 1, 

       &        MPI_INTEGER, MPI_STATUS_IGNORE, ierr) 

  disp = disp + integersize 

 
  do ipde=1,npde 

    do k=-1,kmax1 

      do j=-1,jmax1 

       call setupfile(fid,disp,MPI_DOUBLE_PRECISION) 

       call mpi_file_write(fid, q(-1,j,k,ipde,n), imax+3, 

&          MPI_DOUBLE_PRECISION,MPI_STATUS_IGNORE, ierr) 

     disp = disp + doublesize*(imax+3) 

     end do 

   end do 

  end do 

  call setupfile(fid,disp,MPI_INTEGER) 

  call mpi_file_write(fid, linelength, 1, 

&        MPI_INTEGER, MPI_STATUS_IGNORE, ierr) 

  disp = disp + integersize 

end do 

 

to this: 
 

do n = 0,2*nharms 

  call setupfile(fid,disp) 

  call mpi_file_write(fid, linelength, 1, 

&        MPI_INTEGER, MPI_STATUS_IGNORE, ierr) 

   disp = disp + integersize 

   call setupfile(fid,disp) 

   call mpi_file_write(fid, q(-1,-1,-1,1,n), 

&        linelength/doublesize, 

&        MPI_DOUBLE_PRECISION, MPI_STATUS_IGNORE, ierr) 

   disp = disp + linelength 

   call setupfile(fid,disp) 

   call mpi_file_write(fid, linelength, 1, 

&        MPI_INTEGER, MPI_STATUS_IGNORE, ierr) 

  disp = disp + integersize 

end do 
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We also removed some of the data written out in the flowtec headers for each 

block, retaining only what is required to re-construct the data file afterwards in a post-

processing step, and reducing the flowtec file writing to this functionality: 

 
call setupfile(fid(n),disp,MPI_INTEGER) 

call mpi_file_write(fid(n),n,1, 

&           MPI_INTEGER,MPI_STATUS_IGNORE,ierr) 

disp = disp + integersize 

call setupfile(fid(n),disp,MPI_INTEGER) 

call mpi_file_write(fid(n),imax1,1, 

&           MPI_INTEGER,MPI_STATUS_IGNORE,ierr) 

disp = disp + integersize 

call setupfile(fid(n),disp,MPI_INTEGER) 

call mpi_file_write(fid(n),jmax1,1, 

&           MPI_INTEGER,MPI_STATUS_IGNORE,ierr) 

disp = disp + integersize             

call setupfile(fid(n),disp,MPI_INTEGER) 

call mpi_file_write(fid(n),kmax1,1, 

&           MPI_INTEGER,MPI_STATUS_IGNORE,ierr) 

disp = disp + integersize  

    

do k=0,kmax 

  do j=0,jmax 

    do i=0,imax 

      do ipde=1,npde 

         tempdata(tempindex) = var1(i,j,k,ipde,n) 

         tempindex = tempindex + 1 

      end do 

      do ipde=1,npde 

         tempdata(tempindex) = var2(i,j,k,ipde,n) 

         tempindex = tempindex + 1 

      end do 

    end do 

  end do 

end do 

call setupfile(fid(n),disp,MPI_DOUBLE_PRECISION) 

call mpi_file_write(fid(n),tempdata(1),datasize, 

&    MPI_DOUBLE_PRECISION,MPI_STATUS_IGNORE,ierr) 

disp = disp + datasize*doublesize 

 

Whilst the flowtec files still require almost the same amount of data to be written 

(the tempdata is not reduced in size) we have halved the number of MPI I/O 

operations required to output this data.  Likewise, the same size of restart data is still 

be written, but we have dramatically reduce the number of operations required to 

perform this I/O. 
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Figure 5: Performance of 16384 block simulation with optimised I/O (100 iterations) 

 

The performance of the optimised I/O is show in Figure 5 for the large simulation.  

We can see that the impact of this optimisation at lower core counts is not significant, 

but when we get to large core counts the optimised I/O is having a significant impact.  

The code is around 70% faster at 8192 cores and around 50% faster at 16,384 cores.    

 

We benchmarked the optimised I/O functionality with the smaller test case as well, as 

shown in Figure 6.  Note for this benchmark we reduce the number of iterations of the 

simulation from 100 to 20 to highlight the I/O costs in the simulation.  

 
Figure 6: Performance of 800 block simulation with optimised I/O (20 iterations) 

As with the larger test case we can see the optimised I/O is clearly faster, around 50% 

when using 400 MPI processes (400 cores).  However, it’s clear that the I/O is still 

expensive, with the code performance when not producing output data still much 

faster than the optimised test cases. 
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5.3 Restructured I/O 

To further optimise the I/O performance of COSA we looked at restructuring the way 

the flowtec files were written.    Firstly we remove the per block header data 

completely, replacing it with a per file header, written by one process, that includes all 

the block sizes at the start of the file.  This removed the need for this code within each 

flowtec block write: 

 
call setupfile(fid(n),disp,MPI_INTEGER) 

call mpi_file_write(fid(n),n,1, 

&           MPI_INTEGER,MPI_STATUS_IGNORE,ierr) 

disp = disp + integersize 

call setupfile(fid(n),disp,MPI_INTEGER) 

call mpi_file_write(fid(n),imax1,1, 

&           MPI_INTEGER,MPI_STATUS_IGNORE,ierr) 

disp = disp + integersize 

call setupfile(fid(n),disp,MPI_INTEGER) 

call mpi_file_write(fid(n),jmax1,1, 

&           MPI_INTEGER,MPI_STATUS_IGNORE,ierr) 

disp = disp + integersize             

call setupfile(fid(n),disp,MPI_INTEGER) 

call mpi_file_write(fid(n),kmax1,1, 

&           MPI_INTEGER,MPI_STATUS_IGNORE,ierr) 

disp = disp + integersize  

 

Reducing the number of write operations per harmonic per block to a single write for 

the data.  Furthermore, we also recognised that the code was structured in such a way 

that the data to be written to the flowtec files was first collected together into a 

large temporary array, requiring all blocks owned by a process to be iterated through, 

data collated into this temporary array, then passed to the I/O routines for output. 

 

However, this means that all block data is iterated over once (to construct the 

temporary array), then the I/O routines iterate over that temporary array one block at a 

time, copy that data into another temporary array and then write that out for each 

block. 

 

We constructed a new output routine that does not do the initial collection of data to 

be written into a large temporary array, instead it takes in all the source data for the 

flowtec files, and collects it into a temporary array one block at a time, which is 

then immediately written out to the flowtec file. 

 

This has two benefits, one no longer need a temporary array large enough to store all 

the data for all the blocks a process owns, we simply need a temporary array that can 

hold the data for a single block.  Secondly, we can enable re-use of data that has been 

collected into the temporary array, optimising cache usage and therefore reducing 

computational costs. 

 

Finally, we also recognised that whilst the majority of I/O time is attributable to 

outputting data, when scaling to large numbers of MPI processes the reading of the 

mesh required for the simulation can be an overhead.  This is done using serial 
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Fortran I/O, although each process only reads the sections of the file they require for 

the blocks they have been assigned. 

 

The serial reading of the input mesh is limited in performance by file locking that is 

undertaken when a given process is reading the file.  Whilst this locking (ensuring 

exclusive access to the file for a single MPI process) is not a large issue with small 

process counts, when 16 thousand MPI processes are trying to read the same file it 

can slow down this initial I/O. 

 

Therefore, we parallelised the reading of the mesh file using MPI I/O, removing this 

file locking and the associated process synchronisation. 

 
Figure 7: Performance of 16384 block simulation with restructured I/O (100 iterations) 

 

Figure 7 and Figure 8 show the performance of the restructured and optimised I/O 

functionality.  We can see that it has further improved performance for COSA, with 

the code now around 100% faster on 8192 cores and 70% faster on 16384 cores for 

the large test cases, and 70% faster on 400 cores for the small test case. 

 
Figure 8: Performance of 800 block simulation with restructured I/O (20 iterations) 
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5.4 I/O Standardisation 

There are a number of standard I/O formats commonly used in CFD applications, 

with CGNS1 and TecPlot2 being two of the most common.  Both have parallel I/O 

functionality, and are widely used by visualisation, grid generation, and meshing 

packages for file creation and reading. 

 

As such, it would be useful for COSA to be able to produce and consume data in 

these formats, as it would allow direct visualisation of simulation data without 

conversion from the COSA I/O format to TecPlot or CGNS, and it would also using 

meshes produced from generators without having to convert them into the COSA 

binary mesh format first. 

 

However, for this functionality to be usable in COSA the performance needs to be 

close to that of MPI I/O, so we investigated both CGNS and Tecplot parallel I/O 

functionality to see what kind of performance could be achieved. 

 

5.4.1 CGNS 

CGNS builds on HDF5 to provide I/O functionality.  It stores data in trees, with 

different types of data about the simulation stored in different branches and leaves of 

the tree, along with associated metadata. 

 

CGNS allows both serial and parallel I/O functionality, with metadata and data treated 

separately (both can be written in serial and in parallel).  Not all the CGNS 

functionality has associated parallel versions, but the functionality COSA requires has 

been parallelised. 

 

We created a CGNS version of the parallel restart file functionality, with the metadata 

about the restart file written in serial by a single process, and the data written in 

parallel by all processes. 

 

The metadata I/O was implemented using the following code, which creates a block 

in the file for each block in the simulation: 

 
if(amcontroller) then 

   call cg_open_f('rest.cgns',CG_MODE_WRITE,fid,ierr)      

   if(ierr .ne. CG_OK) then 

      write(*,*) 'cg_open_f restart error' 

      call cg_error_print_f() 

   end if 

          

   call cg_base_write_f(fid,'gridbase',3,3,basenum,ierr) 

   if(ierr .ne. CG_OK) then 

      write(*,*) 'cg_base_write_f error' 

      call cg_error_print_f() 

   end if 

         

                                                 
1CFD General Notation System https://cgns.github.io/ 
2 http://www.tecplot.com/products/tecplot-360/ 
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   do i = 1,blocksize 

      blocknum = i 

      write(zonename, "(A5,I6)") "block",blocknum 

      call cg_zone_write_f(fid,basenum,zonename,sizes, 

     &           Structured,zonenum,ierr) 

     if(ierr .ne. CG_OK) then 

       write(*,*) 'cg_zone_write_f error' 

       call cg_error_print_f() 

     end if 

     call 

cg_goto_f(fid,basenum,ierr,'Zone_t',zonenum,'end') 

     if(ierr .ne. CG_OK) then 

       write(*,*) 'cg_goto_f error' 

       call cg_error_print_f() 

     end if 

     write(linkpath,'(a,i6,a)') 'gridbase/block',zonenum, 

     &            '/GridCoordinates' 

     call cg_link_write_f('GridCoordinates','mesh.cgns', 

     &           linkpath,ierr) 

     if(ierr .ne. CG_OK) then 

        write(*,*) 'cg_link_write_f error' 

        call cg_error_print_f() 

     end if 

     call cg_user_data_write_f('User Data',ierr) 

   end do 

          

   call cg_close_f(fid,ierr) 

   if(ierr .ne. CG_OK) then 

      write(*,*) 'cg_close_f error' 

      call cg_error_print_f() 

   end if         

end if 

 

Then the following code was used to write the data into the restart file, where a block 

is written in a single call (as in the MPI I/O functionality): 
 

basenum = 1 

call cgp_open_f('rest.cgns',CG_MODE_MODIFY,fid,ierr)      

solnum = 1 

do i = 1,blocksize 

  zonenum = i 

  write(zonename, "(A5,I6)") "block",zonenum 

  call cg_zone_read_f(fid,basenum,zonenum, 

&         tempzonename,tempsizes,ierr) 

   if(trim(tempzonename) .ne. zonename) then 

       write(*,*) 'error block name: 

',zonename,tempzonename 

   end if 

   call cg_goto_f(fid,basenum,ierr,'Zone_t',zonenum, 

&         'UserDefinedData_t',solnum,'end') 

   call cgp_array_write_f(fieldname,RealDouble,5,qsizes, 
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&         arraynum,ierr) 

   if(ierr .ne. CG_OK) then 

       write(*,*) 'cg_array_write_f error' 

       call cg_error_print_f() 

   end if                                 

end do 

 

Whilst CGNS is relatively easy to implement, the performance is not comparable to 

MPI I/O.  A test on 512 MPI processes with a 40GB restart file showed the following 

performance: 

MPI I/O File Read 3 seconds 

CGNS File Read 233 seconds 

CGNS File Write 533 seconds 

 

Therefore, it was decided not to implement I/O directly in COSA for reading and 

writing CGNS data.  Instead, we created some serial applications that could covert 

CGNS files in COSA format, and vice versa, for pre/post processing of files outside 

the parallel simulation. 

 

We investigate why the CGNS performance is so much slower than MPI-I/O.  It is 

apparent that CGNS is design for simulations where there are a single, or small 

number of, block(s) in the simulation, with each MPI process responsible for part of a 

block.  This is different to COSA, where there are lots of blocks in a simulation, with 

each process responsible for one or more blocks. 

 

The metadata and operational costs of handling blocks in CGNS format seem to 

account for the slow functionality, and as they are not generally encountered in 

applications using CGNS (because they will only have a single block) the way the I/O 

is structured does not lend itself for efficient multi-block I/O.  

 

5.4.2 Tecplot 

Tecplot provide a number of commercial tools for visualising, analysing, and 

generating CFD data.  To support this they have an I/O format, TecplotIO, that 

includes a library for I/O operations. 

 

TecplotIO supports three different file formats; a legacy ASCII format they their tools 

can read but requires conversion by the tools to process, a binary format known as 

plt, and a partitioned binary format szplt designed for large scale parallel I/O. 

 

We implemented the same restart file functionality we implement for CGNS, 

targeting  szplt files as these enable parallelisation of I/O: 

 
if(tecini142(trim(titlename),trim(varlist), 

&        filename, 

&        trim(pwd)//char(0), 

&        fileformat,filetype,debug,isdouble) .ne. 0) then 

  write(*,*) 'error initialising tecini' 

end if 

do j=1,nblocks 
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  imax1 = blockindexes(1,j) 

  jmax1 = blockindexes(2,j) 

  kmax1 = blockindexes(3,j) 

  datasize = imax1*jmax1*kmax1 

  write (blocknumname, "(I5)") j         

  if(teczne142('block'//trim(blocknumname)//char(0),  

&    zonetype, imax1, jmax1, kmax1, imaxmax,  

& jmaxmax, kmaxmax, simtime, strandid, parentzone,  

& isblock, nfconns, fnmode,  

&    tnfnodes,ncbfaces,tnbconns,Null, Null, Null,  

& shrconn) .ne. 0) then 

     write(*,*) 'error setting up zone' 

  end if 

               

  if(tecdat142(datasize*10,tempdata,isdouble) .ne. 0) 

then 

     write(*,*) 'error writing block data' 

  end if 

      

end do 

 

if(tecend142() .ne. 0) then 

   write(*,*) 'error calling tecend' 

end if 

 

Unfortunately, whilst the above functionality does write a Tecplot file, writing the 

szplt file takes around 7 times as long as it did to write the CGNS file.  The plt 

performance is not as bad, indeed it is around 4x quicker than the CGNS functionality 

in serial, but does not have parallel functionality so is not suitable for inclusion in the 

simulation code. 

 

We have, as with CGNS, created pre-/post-processing utilities to convert the data to 

and from Tecplot format.  The issue with szplt I/O performance has been reported 

to Tecplot and they are working on a fix for this, so it is possible that future versions 

of Tecplot may be suitable for integrating into COSA. 

 

6 WP3 Improvement of MPI communications 
Milestone: Improved parallel communication performance on COSA, ideally removing the 

MPI communication costs altogether (10-20% of the runtime of the code). This will be 

evaluated using profiling and benchmarking as with the other work-packages. 

 

COSA uses nonblocking MPI communications (i.e. MPI_ISend and MPI_IRecv) 

to send and receive halo data between processes.  The nonblocking communications 

are structured in such a way as to enable all communications for a given iteration to 

be started, the MPI library to progress them, and then the code waits until they have 

finished. 
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This was implemented to ensure the ordering of the boundary communication for 

blocks a process owns is not inhibiting parallel performance (i.e. so that we do not 

enforce a particular order of halo communications between blocks and processes).  

However, the same functionality can also be used to overlap communication and 

computation for COSA. 

 

Currently the initiation of communications (the nonblocking subroutine calls) and the 

checking the communications have finished (the wait subroutine calls) are 

implemented within the same routines in COSA, the cut routines that handle halo 

exchanges. 

 

In this work we separated out the initiation of communications, and the checking the 

communications have finished (with associated data handling) into two separate 

routines; communication and waiting. 

 

The communication routines collate data to be sent and start the send and receive 

nonblocking function calls.  The waiting routines check that communications have 

finished and then unpack received data into the appropriate data array.  All that needs 

to be passed between these two routines are the nonblocking handles generated by the 

nonblocking send and receive calls that need to be checked by the wait routines. 

 

We tested this new functionality to ensure correctness and investigated performance 

of this overlapping.  We tried with and without Cray’s nemesis helper threads, 

designed to asynchronously progress MPI messages for applications, and enabled 

using these environment variables when running the application: 
 

export MPICH_NEMESIS_ASYNC_PROGRESS=1 

export MPICH_MAX_THREAD_SAFETY=multiple 

export MPICH_GNI_USE_UNASSIGNED_CPUS=enabled 

 

Unfortunately, there were no significant performance improvements from splitting the 

MPI communications.  Whilst the new functionality allows for potential overlapping 

of communication and compute, the way COSA is structured means there is very little 

work that can be overlapped with the communication.  Values to be communicated 

are calculated, sent, and then used immediately in the simulation, there is no real 

scope for doing other calculations whilst that data is being sent. 

 

To properly exploit this functionality, significant restructuring of the computational 

kernels in COSA would be required to intermingle different types of calculation, and 

thus give potential for undertaking calculations of one type whilst data for a different 

type of calculation is communicated. 
 

6.1 Dynamic allocation 

We also re-organised the memory used in MPI communications.  The existing code 

uses static arrays with compile time defined limits to store data being communicated 

between processes (the temporary storage required to enable nonblocking MPI 

communications). 
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As these limits can only be changed by re-compiling the code, and the code will crash 

if the arrays are too small, these arrays are generally larger than required which is 

wasteful of memory, but also risks failed jobs when the limits aren’t sufficient. 

 

We have re-organised the code and calculated the exact amount of memory required 

for the MPI communications.  Now we dynamically allocate it for the communication 

routines, ensuring exactly the right amount of memory is being used. 

 

7 WP4 Dynamic load balancing 
Milestone: the new DLB capability will yield runtime reductions of about one order of 

magnitude for simulations using production multi-block grids generated with state-of-the-art 

grid generators. 

 

As COSA is a multi-block code, simulation blocks are the standard unit for data 

decomposition across processes.  We do not split blocks within COSA as this would 

require significant functionality to ensure that geometry and boundary conditions are 

correctly handled, we simply distribute existing blocks to processes in as even a way 

as possible, trying to ensure each process has the same number of blocks. 

 

However, this places significant burdens on the process of creating simulation 

datasets.  A given simulation grid must be manually split into blocks prior to running, 

and this splitting must ensure that blocks have equal, or close to equal, amounts of 

work to ensure the parallel simulation is load balanced. 

7.1 Load Balancing Optimisation 

By default, COSA distributes the grid across processes as evenly as possible. The grid 

is divided into blocks, specified in the input file. For ��  blocks and � processes, all 

processes will have at least ���
� � number of blocks. If � does not exactly divide �� , 

the first � processes (going by rank ascending order) gain one additional block, where 

� is the remainder of ��modulo �. 

 

To account for variable block sizes, we define the total work, �, of a given process to 

be the sum of the sizes of the blocks it owns (ignoring other factors such as 

communication). Load balance can now be achieved by distributing blocks across 

processes so that each process has roughly the same work, �, as opposed to a similar 

number of blocks.  

 

To determine which blocks should go to each process, we use the serial graph 

partitioning library METIS3.  Whilst we could have implemented our own partitioning 

algorithm, there is nothing within the functionality we required that necessitated 

developing this functionality given packages such as METIS are already well 

established and tested. METIS can quickly and efficiently find the optimal partition of 

a graph, using constraints specified by the user. 

 

                                                 
3 http://glaros.dtc.umn.edu/gkhome/metis/ Karypsis Lab, University of Minnesota 
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We construct a weighted graph from the COSA input block data, where each block is 

a graph node with "weight" equal to its size (number of grid cells within the block), 

and vertices exist between neighbouring blocks.  

 

The graph data is then passed to METIS through a subroutine call, and METIS returns 

a partitioned block graph so that each partition has approximately the same weight i.e. 

the same �.  Specifically, approach taken to get a load balanced distribution is: 

 

1. An initial block distribution is done (using the original decomposition 

algorithm in COSA). 

2. Each process then constructs three arrays: an array with the number of 

neighbours for each block it owns, an array with the process ranks/ID of these 

neighbours, and an array with the size, i.e. "weight", of each of these 

neighbours 

3. Each process runs METIS with these input arrays (and other parameters). 

METIS produces a partition vector specifying the process rank/ID that has 

been assigned each block 

4. Processes now know which blocks they own and can read them from the input 

mesh file using existing COSA I/O functionality 

 

It is worth noting, that, this does not involve communication between processes since 

each process has all block information for the entire mesh.  This does not mean that 

each process needs to read in all the input data, simply all processes need to read the 

input file that specifies the size and number of blocks within the grid. 

 

Using a serial graph partitioner does necessitate all processes replicating this load 

balancing work, but the trade-off is that it allows us to implement this functionality 

without communication, meaning it should not impact scaling of COSA to large 

process counts.   Indeed, we measured the time to run this functionality on our large 

test case (16,384 blocks) and METIS completed in under 3 seconds. 

 

Another issue that should be highlighted is that load balancing such as that we are 

implementing here relies on there being more units of work to distribute to processes 

that there are processes.  If we have 16 simulation blocks and 16 MPI processes then 

we have no scope for distributing blocks in a load balanced way (if they different in 

the amount of work within them) as we need at least 2 blocks per process to be able to 

distribute them (some may still have a single block, with others having multiple). 

 

We implement the load balancing using the METIS routine 

METIS_PartGraphKway.    This routine takes the following data as input: 

• nvtxs: The number of vertices in the graph.  For COSA this is the number of 

blocks in the simulation 

• ncon: The number of balancing constraints (weights on each vertex to 

consider when partition), which we set to 1 

• xadj, adjncy: The adjacency structure of the graph, specifying which 

blocks a block is connected to.  We use the block and cut (boundary) data in 

the COSA input file to construct these 

• vwgt: The weights of the graph vertices.  This is the number of grid points 

per block (the size of each block). 
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• vsize: The size of vertices used for communication volume calculations.  

This is null for COSA. 

• adjwgt: The weights of the edges between vertices (rather than the vertices 

themselves).  For standard load balancing this is set to 1 for every edge.  For 

load balancing that take communications into account this is set to the size of 

messages required between the two connected vertices. 

• nparts: The number of partitions to split the graph into.  For COSA this is 

the number of MPI processes being used for the simulation. 

• tpwgts: Target weight partition.  We set this to be 1.0/nparts 

• ubvec: Load balance tolerance for the partitioning.  We set this to be 10% 

(1.01) 

 

It return a partition array which has an entry for every block in the simulation with the 

number of the partition that has been assign to.  These partitions are mapped to MPI 

processes (the partition number is equivalent to the MPI process rank + 1 of the 

process that will own that block). 

 

This partition array is then used by the standard COSA data decomposition code to 

assign blocks to processes.  The only modification that we need to make was to 

enable assigning none contiguous block numbers to processes.  The original 

decomposition code assigns blocks to processes in contiguous chunks, but the same is 

not guaranteed with the METIS functionality.  All that is required to enable this is to 

keep an array for blocks assigned to this process with the block number of each block 

we own. 

 

Finally, we also implemented functionality to read a pre-defined block decomposition 

from file, to enable the load balancing to be done outside the simulation and simply 

provided as input. 

 

 

7.1.1 Communication costs 

The functionality discussed previously will attempt to distribute grid cells evenly 

across processes, i.e. assign blocks to processes so they have roughly equal numbers 

of grid cells to compute.  This will balance computational work across MPI processes, 

however it does not take into account the communication cost associated with blocks 

and their halo exchanges.  As a consequence, it could generate domain 

decompositions that balance the amount of work between MPI processes but 

significantly increases the amount of communication required for the simulation. 

 

This is because if neighbour blocks are owned by the same MPI process then 

associated communications can be undertaken through simple memory copies.  

However, if they are owned by different MPI processes then communications through 

the MPI library will be required.  Even if these are undertaken through memory 

copies inside the MPI libraries (i.e. the MPI processes are on the same node) this will 

still involve copying the data to the temporary array for sending via MPI and then 

unpacking it after the receive has happened. 
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We can extend our domain decomposition functionality to take communications into 

account.  Using the same METIS functionality as before, we can adjust the adjacency 

weights of each edge to take into account the communications required between 

blocks.  This type of load balancing can be enabled at run time by specifying a flag in 

the input file. 

7.1.2 Load balancing performance  

We benchmarked the new functionality and compare the performance to the original 

code using the unbalanced grid we used in the initial benchmarks.  Because the load 

balancing decomposition requires there to be more blocks than processes (so varying 

numbers of processes can be assigned to each MPI process) we cannot benefit from 

load balancing using 256 MPI processes (the same number as the total number of 

blocks in the simulation).  Performance results are shown in Figure 9. 

 

 
Figure 9: Comparison of the unbalanced simulation runtime vs the same simulation run with the 

load balanced decomposition 

 

It is evident from the above graph that the load balanced code is significantly faster 

than the original decomposition.  Indeed, using 64 cores we can complete the 

simulation in the same time as the original code using 256 cores and at 128 cores we 

are 50% fast with the load balanced code that 256 cores using the original code.  At 

128 cores the load balanced code is ~3x faster than the original code. 

 

7.1.3 Compute node usage 

Furthermore, the load balancing decomposition also enables us to use numbers of 

MPI processes that do not evenly divide the number of blocks in the simulation 

without suffering significant performance impacts. 

 

Whilst this may not seem useful functionality, and is likely to be irrelevant for very 

large simulations, because there are a none power of two number of cores in the 

ARCHER compute nodes (24 cores per node) we often have the scenario that cores 

are left empty when running simulations. 

 

For instance, if I am running a simulation with 256 blocks, with the original 
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because this would give me an even number of blocks per MPI process.  However, as 

ARCHER has 24 cores per node, running 16 MPI processes leaves 8 cores spare.  

Likewise, 32 MPI processes leaves 16 cores spare on one of the two nodes being 

used.  64 MPI processes leaves 8 cores spare on one node, and 128 MPI processes 

leaves 16 spare. 

 

The load balancing functionality lets us fill such spare cores without having to impact 

runtime, as demonstrated in the following table: 

ARCHER Nodes 

Used 

MPI Processes 

Used 

Original decomposition Load balance 

decomposition 

2 32 4924 2220 

2 48 4081 1544 

3 64 3157 1247 

3 72 3231 968 

4 96 2833 792 

5 120 2764 714 

6 128 2016 646 

 

We can see from the table above that if we use 6 nodes instead of 5 in the load 

balanced case we get around a 10% performance improvement with a 20% increase in 

the cost of our simulation.  We can drop back to the smaller number of nodes, fill 

them up completely, and still get good performance.  If we do the same for the 

original data decomposition we get a significant performance impact, thus making it 

not cost effective. 

 

Therefore, not only has the load balancing functionality enabled simple grid 

decompositions to be used directly by COSA without losing performance, it has also 

enabled more efficient use of the systems (such as ARCHER) that COSA is run on. 

 

7.1.4 Communication cost decomposition performance 

We also benchmarked the functionality that takes into account communication costs 

as well as the number of grid cells within a block when the decomposition is 

constructed.  Using the same benchmark we compared performance to the standard 

load balancing functionality, with the results presented in Figure 10. 

 
Figure 10: Comparison of communication load balancing vs workload balancing 
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As can be seen in the above graph the communication balancing functionality does 

not significantly change the performance of the application for the simulations we 

have undertaken.  However, for larger simulations it may be more important. 

 

8 WP5 Serial Improvements 
Milestone: the core computational kernels will vectorise using the Intel and Cray compilers 

on ARCHER, which is expected to greatly reduce runtimes of all COSA simulation types.  

 

We have investigate optimising the top computational kernels in COSA, namely those 

listed in the profiling data we presented in Section 3.3.1: 

• vflux 

• rhoflux 

• muscl 

• q_face 

• tridi 

• bresid 

• muscl_bi 

• rtst 

 

In these routines we looked to improve vectorisation and reduce computational costs.  

This work involved restructuring some loop calculations to reduce temporary arrays 

and boost cache re-use, removing loop invariants, and replacing divisions by 

reciprocals such as: 
do ipde = 1,4 

 fac1 = fact * vol(i,j)/dt 

end do 

 

becomes: 
 

recip = 1.0d / dt 

do ipde = 1,4 

  fact1 = fact * vol(i,j) * recip  

end do 

 

Whilst the above restructuring does have an impact on the calculated results, we 

validated that simulation results with the new functionality were close enough to the 

original code to be acceptable. 

 

After implementing the optimisations we re-ran out benchmark cases and observed 

between a 3-5% performance improvement for this work. 

9 Summary 
We have made a number of improvements to COSA to improve the performance and 

usability of the code.  The new boundary conditions (MFPBC) enable harmonic 

balance simulations to fully realise the performance savings this frequency domain 

approach allows for turbo machinery applications.  
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Our I/O work has reduced the cost of I/O at large core counts by as much as 70%, 

significantly reducing parallel overheads and saving simulation time. 

 

We have provided tools to convert COSA data to and from standard CFD data 

formats (CGNS and Tecplot) enabling data generated from other packages to be read 

by COSA and data produced by COSA to be read by other packages. 

 

We have implemented load balancing functionality that has demonstrated up to 3x 

performance improvements and up to a 4x reduction in resource utilisation when 

compared to the existing code using an unbalanced simulation.  It also enables the 

efficient use of full compute nodes, rather than relying on using a number of MPI 

processes that evenly divides the number of blocks in the simulations.   

 

Crucially, though, it also greatly reduces the time and effort required to generate input 

grids or meshes for COSA, enabling the output of standard grid/mesh generation tools 

to be used directly in COSA. 

 

Finally, we have made the code easier to use through dynamic memory allocation, 

and enabled future communication optimisation by splitting sending/receiving and 

waiting for message completion.  Altogether these performance improvements and 

functionality upgrades significant increase the potential for COSA to be a highly 

useful, usable, and scalable simulation package. 

10 Future Work 
There are a number of areas where further optimisation or functionality is could be 

added to COSA.  If the szplt I/O format performance issues are fixed by Tecplot 

then this I/O format could be evaluated for performance and added to COSA if it 

performs sufficiently well. 

 

A more extensive refactoring of the code would enable exploiting the splitting of 

communication we have implemented in this project. 

 

There is also potential to do some hardware specific optimisation in COSA, porting to 

KNL and optimising where the memory is allocated on the hardware would potential 

bring benefits, as would porting to GPUs. 

 

11 Appendix A 
COSA input files used for this project 

 

11.1 16384 block input file header: 

 
Input file for 3D Euler/NS code 

debug      model     flow-type  id 

n          sst       external   aircraft 

gamma      reyno     pranl      machfs     alpha    beta 

1.4d0      1.0d+7    0.71d0     0.1        5.00     0.d0 
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prant      tkefar    mutfar     wall       roughk 

0.9d0      1.d-6     0.1        wilcox     0.d0 

posprd     lim_ptke  prdlim     lim_pome 

n          n         100        n          minimum  

second 

flow-mode  solver    rk option  nharms 

unsteady   hb        rkex       4      

move       freq.     dh0x       dh0y 

plunge     0.01      1.0        0.d0 

irest      srest     cfl        cdff       lmax       

iupdt      toler 

 0         10000     1.5        4          100        1          

1.d-14 

rkap       irs-typ   cfli       psi 

-1.        cirs_v1   3.0d0      0.25 

cflt       cflit     ramp-opt   n(3)       n(2)       

n(1) 

2.00       4.00      ramping1   1000       500        250 

cfli(2)    cflit(2)  cfli(1)    cflit(1)   stop 

1.5        2.0       0.5        0.5        50000 

lim        epslim    cntrpy     etpfxtyp   entfxctf 

4          1.d-6     0.d0       0          0.95d0 

nlevel     nl_crs    nl_fmg     nstart     npre       

npost      ncrs 

3          4         1          3          3          3          

6  

prol.type            restr.type lim.type 

bilinear             ho_rest    lim_corr3 

flow-speed 

nolomach 

tref 

288.2 

functional 

default    0.25      0.0 0.5 

lref1      lref2     lref3 

1.0        1.0       1.0 

1 

224  4609 4610 4611 4612 4613 4614 4615 4616 4865 4866 

4867 4868 4869 4870 4871 4872 5121 5122 5123 5124 5125 

5126 5127 5128 5377 5378 5379 5380 5381 5382 5383 5384 

5633 5634 5635 5636 5637 5638 5639 5640 5889 5890 5891 

5892 

 5893 5894 5895 5896 6145 6146 6147 6148 6149 6150 6151 

6152 6401 6402 6403 6404 6405 6406 6407 6408 6657 6658 

6659 6660 6661 6662 6663 6664 6913 6914 6915 6916 6917 

6918 6919 6920 7169 7170 7171 7172 7173 7174 7175 7176 

742 

5 7426 7427 7428 7429 7430 7431 7432 7681 7682 7683 7684 

7685 7686 7687 7688 7937 7938 7939 7940 7941 7942 7943 

7944 8193 8194 8195 8196 8197 8198 8199 8200 8449 8450 

8451 8452 8453 8454 8455 8456 8705 8706 8707 8708 8709 87 
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10 8711 8712 8961 8962 8963 8964 8965 8966 8967 8968 9217 

9218 9219 9220 9221 9222 9223 9224 9473 9474 9475 9476 

9477 9478 9479 9480 9729 9730 9731 9732 9733 9734 9735 

9736 9985 9986 9987 9988 9989 9990 9991 9992 10241 10242 

 10243 10244 10245 10246 10247 10248 10497 10498 10499 

10500 10501 10502 10503 10504 10753 10754 10755 10756 

10757 10758 10759 10760 11009 11010 11011 11012 11013 

11014 11015 11016 11265 11266 11267 11268 11269 11270 

11271 1 

1272 11521 11522 11523 11524 11525 11526 11527 11528 

16384 

11.2 800 block input file header 
Input file for 3D Euler/NS code 

debug      model     flow-type  id         nblade 

n          sst       external   shawt      3 

gamma      reyno     pranl      machfs     alpha    beta 

1.4d0      7.7d+5    0.71d0     0.0335     0.00     20.00 

prant      tkefar    mutfar     wall       roughk 

0.9d0      1.d-4     0.1        menter     0.d0 

posprd     lim_ptke  prdlim     lim_pome   pr.type  

turb.ord. 

n          y         10         y          minimum  

second 

flow-mode  solver    rk option  nharms 

unsteady   hb        rkex       4 

move       freq.     xrotc      yrotc      frame 

rotating  -0.000593  0.d0       0.d0       relative 

irest      srest     cfl        cdff       lmax       

iupdt      toler 

0          5000      1.5        4          20         1          

1.d-12 

rkap       irs-typ   cfli       cutcirs    psi 

-1.        cirs_v1   3.0        0          0.0625 

cflt       cflit     ramp-opt   n(3)       n(2)       

n(1) 

2.0        4.0       ramping1   2000       1000       500  

cfli(2)    cflit(2)  cfli(1)    cflit(1) 

1.5        2.0       0.1        0.1      

lim        epslim    cntrpy     etpfxtyp   entfxctf 

4          1.d-6     1.d0       0          0.3d0 

nlevel     nl_crs    nl_fmg     nstart     npre       

npost      ncrs 

1          4         1          2          3          2          

2  

flow-speed 

nolomach 

tref 

288.2 

functional 
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default 0.0 0.0 0.0 

lref1      lref2      lref3 

1.0        1.0        1.0 

1 

76  33 37 41 42 49 50 57 58 125 126 161 165 169 170 197 

198 233 234 241 242 341 342 351 356 357 362 371 372 385 

390 395 396 405 406 413 418 455 460 465 470 475 480 481 

486 499 504 505 510 519 524 529 534 596 601 606 611 616  

621 626 631 636 640 645 650 662 667 672 676 681 686 700 

705 710 715 720 725 

800 

 

11.3 256 block unbalanced decomposition input file header 
*** input file for 3D Euler/NS COSA solver *** 

debug      model     flow-type  id 

n          sst       external   aircraft 

gamma      reyno     pranl      machfs     alpha    beta 

1.4d0      1.0d+7    0.71d0     0.1        5.00     0.d0 

prant      tkefar    mutfar     wall       roughk 

0.9d0      1.d-6     0.1        wilcox     0.d0 

posprd     lim_ptke  prdlim     lim_pome 

n          n         100        n          minimum  

second 

flow-mode  solver    rk option  nharms 

unsteady   hb        rkex       4      

move       freq.     dh0x       dh0y 

plunge     0.01      1.0        0.d0 

irest      srest     cfl        cdff       lmax       

iupdt      toler 

 0         10000     1.5        4          200        1          

1.d-14 

rkap       irs-typ   cfli       cutcirs    psi 

-1.        cirs_v1   3.0d0      0          0.25 

cflt       cflit     ramp-opt   n(3)       n(2)       

n(1) 

2.00       4.00      ramping1   1000       500        250 

cfli(2)    cflit(2)  cfli(1)    cflit(1)   stop 

1.5        2.0       0.5        0.5        50000 

lim        epslim    cntrpy     etpfxtyp   entfxctf 

4          1.d-6     0.d0       0          0.95d0 

nlevel     nl_crs    nl_fmg     nstart     npre       

npost      ncrs 

3          4         1          3          3          3          

6  

prol.type            restr.type lim.type 

bilinear             ho_rest    lim_corr3 

flow-speed 

nolomach 

tref 
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288.2 

functional 

default    0.25      0.0 0.5 

lref1      lref2     lref3 

1.0        1.0       1.0 

1 

32  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

22 23 24 25 26 27 28 29 30 31 32  

256 


