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Abstract

We have implemented a full projector method in the CRYSTAL code. We
demonstrate the new method’s ability to converge calculations for a metal (Li),
insulator (LiF), molecular crystal (NH3) and a low band gap semiconductor (Ge)
with the DEF2-TZVP basis for a range of lattice parameters and projector cutoff
values.

1 Introduction

In Hartree-Fock theory [1] the electronic ground state is found by minimising the total
energy of the system with respect to a set of N normalised spin orbitals ψi,

E =< ψiHψi >

The Hamiltonian, H , is composed of one-electron terms and two-electron (Coulomb
and Fock-exchange) terms,

H =
∑
i

hi +
1

2

∑
i 6=j

gij

where

hi = −
1

2
∇2
i −

N∑
α

Zα

|~ri − ~Ri|
and

gij =
∑
i 6=j

1

|~ri − ~rj |

in which ~ri and ~Rα represent electronic and nuclear coordinates respectively (atomic
units are used throughout). This generates a set of N equations, one for each orbital,
which are solved using a self consistent field (SCF) procedure to find the ground state
orbitals, eigenvalues (one-particle energies) and the total energy. The same approach
can be extended to density functional theory (DFT). In this case, the Fock-exchange
component originating in the electron-electron repulsion terms gij from the antisym-
metry condition imposed by the Hartree-Fock wave-function is replaced by a local
exchange-correlation (xc) term.
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In the Gaussian basis set formalism implemented in CRYSTAL [2] [3], all one-
and two-electron terms are computed analytically, with the exception of the xc term,
which is estimated by quadrature on a grid. The xc is, in general, unknown, and needs
to be approximated. Several xc approximations are available in CRYSTAL, and the
code is particularly well optimised to treat hybrid xc terms (e.g. B3LYP, PBE0, dou-
ble and range separated hybrids) with extremely high efficiency in periodic systems.
This unique capability is virtually unparalleled by any other currently available first-
principles software for solid state calculations.

For a periodic system, the one-particle orbitals (crystalline orbitals) are labelled by
a crystal quasi-momentum index ~k representing the reciprocal-space dispersion of the
orbital and, in the formalism implemented in CRYSTAL, they are expressed as linear
combinations of atom centred atomic orbitals (AOs) φ(~r),

ψi(~r;~k) =
∑
µ

aµ,i(~k)
∑
g

φµ(~r − ~Aµ − ~g)ei
~k.~g

where ~Aµ denotes the coordinate of a nucleus in a reference cell in the periodic lattice
on which the orbital φµ is centred, ~g are direct space lattice vectors and aµ,i(~k) are the
expansion coefficients of the crystalline orbitals in the AO basis, which are determined
by solving the SCF equations. Each AO is expressed as a linear combination of indi-
vidually normalised Gaussian type functions (GTFs) G(αj ;~r − ~Aµ − ~g) of particular
angular symmetry (s, p, d, f, etc), with fixed coefficients dj and exponents αj defining
their radial dependence:

φ(~r − ~Aµ − ~g) =
nG∑
j

djG(αj ;~r − ~Aµ − ~g)

The collection of all atomic orbitals is referred to as the basis set.
For a particular Hamiltonian (Hartree-Fock, DFT, etc.) the coefficients aµ,i(~k) are

determined by solving a k-dependent Roothan-Hall like equation (RHLE)

H(~k)A(~k) = S(~k)A(~k)E(~k)

in which S(~k) is an overlap matrix (in a basis of linear combinations of AOs satisfying
Bloch’s theorem), E(~k) is a (diagonal) matrix of eigenvalues, corresponding to band
energies, and

H(~k) =
∑
~g

H~gei
~k.~g

is the Fourier transform of the Hamiltonian matrix in direct space. At the solution of
the RHLE, the total energy is given by

Etot =
1

2

∑
ij

∑
~g

P~gijH
~g
ij

where the direct-space Hamiltonian matrix elements represent the basis set representa-
tion of the one- and two-electron terms hi and gij and the direct-space density matrix
P~g is given by

P~gkl = 2

∫
BZ

d~kei
~k.~g

∑
m

a†k,m(
~k)al,m(~k)θ[εF − εm(~k)]

2



where ak,m(~k) are elements of the eigenvector matrix A(~k), θ is a step function, εF is
the Fermi energy and εm is the m-th eigenvalue of the RHLE. The integral is restricted
to the first Brillouin Zone (BZ).

The RHLE defines a generalised eigenvalue problem, which can be solved by di-
agonalising the associated eigenvalue equation (AEE)

H ′(~k)A′(~k) = A′(~k)E(~k)

with H ′(~k) = S−
1
2 (~k)H(~k)S−

1
2 (~k) and A′(~k) = S

1
2 (~k)A(~k). The algorithm used

in CRYSTAL to compute the ground state energy, along with a number of related
properties, can then be summarised as follows.

1. Calculate analytically the one- and two-electron (Coulomb and exchange) terms
in AO basis, to determine the Hamiltonian matrix elements H~g

ij . If necessary,
add the xc components obtained from quadrature.

2. Fourier transform the Hamiltonian to its reciprocal-pace representation H(~k).

3. Compute S−
1
2 (~k) and solve the AEE by direct diagonalisation at each k-point

in the BZ.

4. Calculate the Fermi energy, the new density matrix P~g and the new total energy.

5. Repeat steps 2-4. until convergence in the total energy.

One method to form S−
1
2 (~k) is to diagonalise S(~k), take the inverse square root

of each eigenvalue to form a diagonal matrix and to then un-diagonale by transform-
ing back to the initial representation. S(~k) is Hermitian and positive definite and its
square root is therefore well defined. However, there are cases in which some of the
eigenvalues are almost vanishing. In this situation the calculation of H ′(~k) involves
scaling H(~k) with small eigenvalues of the order of 10−n, with the consequent loss
of 2n significant digits. The resulting numerical noise is amplified at each cycle of
the SCF procedure, which leads to slow convergence or spurious energy oscillations.
In practice, when some of the eigenvalues of S are of the order of 1 × 104, a dou-
ble precision calculation is likely to suffer from numerical instability. This situation
is referred to as basis set linear dependence, and it occurs when GTFs with very dif-
fuse exponents αj contribute to one or more AOs. The linear dependence problem is
usually considered one of the main limitations of non-orthogonal (localised) basis set
functions in electronic structure theory.

The problem of linear dependence can however be circumvented. After diagonal-
ising the overlap matrix theN positive eigenvalues can be reordered in decreasing size.
A cutoff can then be introduced (denoted by STOL in what follows) and the m lowest
eigenvalues classified as too small and therefore to be associated with linear combi-
nations of atomic orbitals that will cause numerical instabilities. The transformation
matrix S−

1
2 (~k) can then be truncated by eliminating the last m elements to obtain an

N by (N −m) rectangular matrix that can be used in Step 3 to obtain a Hamiltonian
matrix defined in a space of N −m transformed orthonormal basis functions. If the
eliminated eigenvalues were exactly zero, this N −m function set would span exactly
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the same space as the original basis set and no loss of accuracy is incurred. In gen-
eral, however, eliminating finite eigenvalues will introduce an error in the total energy,
density and ground state orbitals, and this error will need to be quantified empirically.

The work proposed is devoted to implementing a general method for eliminating
linear dependence in calculations on extended crystalline systems, replicated parallel
and data distributed parallel (MPP) versions of the CRYSTAL code. The aim of the
work is to code a projector method that eliminates the numerical noise caused by linear
dependence during the SCF. This will be done in two stages. First, we will implement
a simple projector approach in which: (a) the matrix S(~k) is diagonalised; (b) columns
of S(~k) corresponding to eigenvalues lower than a predefined threshold are set to zero;
(c) S−

1
2 (~k) is computed from the derived matrix at all cycles of the SCF. The size

of all matrices will be left unchanged. This approach is guaranteed to remove linear
dependence, but it suffers from a significant drop in performance caused but the loss
of pre-conditioning.

In the second part of the work, we will implement a full projector approach, in
which a new N × (N −m) matrix S−

1
2 (~k) is built by reordering S(~k) and removing

eigenvectors with eigenvalues below STOL. This approach will be extended from the
sequential to the data-replicated and massively parallel version of the code.

2 Implementation

CRYSTAL assumes that the Hamiltonian and eigenvector matrices are the same size
at every k point, where the size is the number of basis functions N . The main change
in the code is to relax this asssumption, which requires an array to store the new size
N −m for each k point (sdik dims). When a cutoff is specified in the user input,
the overlap matrix created in the routine SDIK is diagonalised, truncated and the size
is stored for each k. This size is then used in the routine ADIK which transforms the
N×N Hamiltonian matrix in the basis function space to theN−m×N−m orthogonal
space and then diagonalises the matrix. For the serial and data replicated codes the
bloch functions are symmetry adapted so there are multiple matrices of different sizes
at each k related to the irreducible representations of the space group each of which
may be reduced in size. The m missing values in the N eigenvalues are filled with
a large value which effectively excludes them from the Fermi energy search without
needed to modify the FERMI subroutine. The routine PDIG which constructs the real
space density from the eigenvectors only needs to be changed to read the correct size
of matrix, as the truncated vectors are in the unoccupied space and don’t contribute to
the density.

The equivalent routines in the MPP code are init k space evecs adik mpp pdig.
The original code also allocated ScaLapack descriptors in the init k space. The
code to generate descriptors has been separated into a subroutine gen descriptors
and new routines to diagonalise the overlap matrix sdik diag and map the truncated
result into the new descriptor map sdik have been added. The original k independent
N ×N descriptor has been replaced by descriptors for the initially constructed N ×N
Hamiltonian matrix, the N × (N − m) transformation/eigenvector matrix and the
(N−m)×(N−m) transformed Hamiltonian which is diagonalised. These descriptors
are all initialised to the N ×N default and are unchanged unless a cutoff is specified
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in the user input. In the original code allocation of the eigenvector matrices was in
init k space, this is now postponed until after the overlap matrix has been formed
and its size identified.

For Coupled-Perturbed Hartree-Fock(CPHF) calculations there are changes to SACOTOAO
which expands the symmetry adapted eigenvectors (in the non-MPP versions) into a
single matrix at each k which is no longer symmetry adapted. This requires summing
the sub-matrix sizes into a single value in sdik dims. These values are then fur-
ther mapped into sizes for the different k point grids due to different symmetries in
each cartesian direction in the CPHF initialisation. Unlike the SCF code, CPHF also
does matrix operations on the number of unoccupied states, requiring extra changes to
CP PDIG compared to PDIG

3 Using the Full projector method

The changes to CRYSTAL are controlled by a keyword, OVERLAPTOL which takes 2
parameters on the following input line. The first is a floating point number specifying
the value of the eigenvalue below which states are removed and the second is an integer
parameter from 1 to 3 controlling the verbosity of information on the eigenvalues and
truncation at each k point (3 is most verbose).

When using the high quality quantum chemistry basis sets which contain diffuse
guassians with the projector method it is important to make sure that the integral
tolerances are high enough to remove negative eigenvalues from the overlap matrix,
which should be positive definite. The program will generate warnings for any nega-
tive eigenvalues. Increasing the integral tolerances with the TOLINTEG keyword may
also require increasing the size of real space lattice vector array with the LATVEC
keyword. Tolerances > 15 attempt to sum values of the size of the machine dou-
ble precision limit into elements of the overlap matrix that are of order 1.0 which is
numerically unreliable.

At high integral tolerances it is also likely that the k point sampling will need to
be increased for stable convergence (keyword SHRINK). If the sampling is too small
then the integration over k to reconstruct the density may fail to sample to full region
of real space over which the Hamiltonian is constructed.

Calculations with high quality basis sets are expensive. The main cost is in the
two-electron integrals due to increased tolerances and the larger set of real space lattice
vectors required by the diffuse Gaussian functions.

4 Full projector method tests

The inital bulk test cases specified in the work plan were a metal (Li), insulator (LiF),
molecular crystal (NH3), and a small gap semiconductor (Ge). The bulk results are
compared using the Birch-Murnaghan equation of state fitting used in the deltacodes
[6] project. These are extended to a 2D system (graphene).

In order to compare total energy calculations CRYSTAL requires the use of the
FIXINDEX keyword. Combined with a common inital geometry this ensures the in-
tegral screening tables used are the same for each calculation, which avoids disconti-
nuities in the total energy due to screening changes. The following calculations have
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Table 1: Walltime (s) of 1 SCF cycle at the tolerances specified in the text on 1 core
Basis set Li LiF NH3 Ge Graphene

POB-TZVP 84 190 246 204 40
DEF2-TZVP 591 19237 1320 1327 717
DEF2-QZVP - - 14167 - -

Table 2: Smallest eigenvalue in overlap matrix
Basis set Li LiF NH3 Ge Graphene

POB-TZVP 1.71× 10−2 4.10× 10−4 5.72× 10−4 1.74× 10−3 1.57× 10−4

DEF2-TZVP 2.90× 10−11 2.76× 10−12 2.05× 10−4 7.51× 10−7 8.99× 10−11

DEF2-QZVP - - 6.72× 10−7 - -

been run with a reduced volume of 10% in the initial geometry to allow for an ade-
quate sampling of the energy-volume relationship about the original lattice parameter.
Once the geometry with the minimum volume has been found it is normal practice to
run a new calculation at this optimal geometry. Since this geometry will be different
to the one used with FIXINDEX, with different screening tables it may not converge.
In order to test this we also run some of the test cases with different lattice parameters
and without FIXINDEX.

Results using the projector cutoff are for the DEF2-TZVP [4] basis sets unless
stated otherwise, with comparisons to the POB-TZVP [5] basis set. For each of the
test cases we plot energy-volume curves using an energy relative to the minimum of the
curve. This creates a common energy scale for the different basis sets and emphasizes
the relative shape of the curves. The energy difference between each curve and the
DEF2-TZVP calculation with a 1× 10−4 cutoff are listed in tables for each test case.
We also tabulate the states that remain after applying the projector cutoff and the results
of the Birch-Murnaghan equation of state fitting.

4.1 Li

Using an initial lattice parameter of 3.509Å for the body-centred cubic structure,
TOLINTEG 12 12 12 18 60, SHRINK 48 192, PBE xc functional, and TOLDEE
7 produces the energy-volume results in figure 1. The reciprocal space sampling is
converged to approximately 1µH . The equation of state fit used the calculated values
from -10% to -1% in 1% steps about the approximate minimum of -6% (-8% to +1%
for POB-TZVP).
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Figure 1: Li total energy vs Lattice Volume for various eigenvalue cutoffs
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Table 3: Li total energy differences
Overlap Tol δE(µH) States per k point (basis size)
POB-TZVP 3644 7 (7)
1× 10−3 14 10-13 (14)
5× 10−4 2 10-13 (14)
2× 10−4 0 10-13 (14)
1× 10−4 0 10-13 (14)
5× 10−5 -1 10-13 (14)

Table 4: Li Equation of state
Overlap Tol Min Volume (Å3/atom) Bulk Modulus δ (meV/atom) δ (%)
POB-TZVP 21.06525 16.65791 2.458 133.2
1× 10−3 20.39057 14.28276 0.184 12.6
5× 10−4 20.34735 14.21196 0.055 3.8
2× 10−4 20.33239 14.04692 0.003 0.2
1× 10−4 20.33172 14.03891 0 0
5× 10−5 20.34839 13.56175 0.071 5.0
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Figure 2: LiF total energy vs Lattice Volume for various eigenvalue cutoffs
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Table 5: LiF total energy differences
Overlap Tol δE(µH) States per k point (basis size)
POB-TZVP 5020 25 (25)
1× 10−3 93 40-43 (45)
5× 10−4 47 41-43 (45)
2× 10−4 16 41-43 (45)
1× 10−4 0 41-44 (45)
5× 10−5 -1 41-44 (45)

4.2 LiF

Using an initial lattice parmeter of 4.027Å, TOLSHORT 10, SHRINK 32 64, B3LYP,
and TOLDEE 7 produces figure 2. All the results except for the lowest cutoff also con-
verge with SHRINK 24 48. All but the lowest cutoff also converge when run with
lattice changes between -9% and +9% without FIXINDEX. 5. The equation of state
results in table 6 are fitted to lattice changes from -7% to +9% about the apparent
minimum of +1%.
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Table 6: Delta code values for LiF
Overlap Tol Min Volume (Å3/atom) Bulk Modulus δ (meV/atom) δ (%)
POB-TZVP 16.80577 71.30894 5.348 84.2
1× 10−3 16.48330 72.17029 0.318 5.3
5× 10−4 16.47900 72.71818 0.247 4.1
2× 10−4 16.46421 72.41129 0.024 0.4
1× 10−4 16.46280 72.27275 0 0
5× 10−5 16.47239 71.66546 0.133 2.2

Figure 3: NH3 total energy vs Lattice Volume for various eigenvalue cutoffs
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4.3 NH3

Using the ICSD 638341 structure with lattice parameter 4.77Å based on a 10% lattice
shrink there is no linear dependence with DEF2-TZVP at 2 × 10−4 and below, so
a calculation is also run with DEF2-QZVP to properly test the new code (figure 3)
The calculations use TOLSHORT 8, SHRINK 8 16, B3LYP, and TOLDEE 7. The
equation of state is fitted from -7% to 0%, an equal number of 1% steps about the
apparent minimum at -3%.
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Table 7: NH3 total energy differences
Overlap Tol δE(µH) States per k point (basis size)
POB-TZVP 17250 144 (144)
1× 10−3 583 188-190 (196)
5× 10−4 271 191-194 (196)

DEF2-TZVP 0 196 (196)
DEF2-QZVP 1× 10−4 -22550 530-532 (552)

Table 8: Delta code values for NH3

Overlap Tol Min Volume (Å3/NH3) Bulk Modulus δ (meV/NH3) δ (%)
POB-TZVP 26.15537 106.54191 0.977 7.0
1× 10−3 26.20284 104.74043 0.623 4.5
5× 10−4 26.23824 106.20512 0.457 3.3

DEF2-TZVP 26.19818 105.45877 0 0
DEF2-QZVP 1× 10−4 26.09333 105.10752 2.448 17.5

4.4 Ge

Using an initial lattice paramter of 5.762Å, TOLSHORT 10, SHRINK 32 64, B3LYP,
and TOLDEE 7 we get the results in figure 4. The higher cutoff values will also con-
verge at reduced tolerances and k point sampling. The calculations also converge with
lattice changes from -9% to +9% without FIXINDEX. The equation of state curve is
fitted from -6% to +8% for DEF2-TZVP and from -9% to +6% for POB-TZVP.

Table 9: Ge total energy differences
Overlap Tol δE(µH) States per k point (basis size)
POB-TZVP -1960 82 (82)
1× 10−3 362 90-93 (96)
5× 10−4 336 92-93 (96)
2× 10−4 189 92-93 (96)
1× 10−4 0 92-94 (96)
5× 10−5 -38 92-95 (96)
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Figure 4: Ge total energy vs Lattice Volume for various eigenvalue cutoffs
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Table 10: Delta code values for Ge
Overlap Tol Min Volume (Å3/atom) Bulk Modulus δ (meV/atom) δ (%)
POB-TZVP 23.06024 89.77262 18.477 157.0
1× 10−3 24.12175 65.64929 0.428 5.3
5× 10−4 24.12434 65.06626 0.410 5.1
2× 10−4 24.18526 63.34386 0.485 6.1
1× 10−4 24.14511 65.59355 0 0
5× 10−5 24.14425 65.15311 0.150 1.9
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Figure 5: Graphene total energy vs Lattice Volume for various eigenvalue cutoffs

-5 0 5
Volume change (%)

0

5000

10000

E
-E

m
in

 (
µ

)

DEF2-TZVP, Tol 1x10
-4

DEF2-TZVP, Tol 2x10
-4

DEF2-TZVP, Tol 5x10
-4

DEF2-TZVP, Tol 1x10
-3

POB-TZVP

Table 11: Graphene total energy differences and minimum area
Overlap Tol δE(µH) States per k point (basis size) Min Area (Å2)
POB-TZVP 15360 36 (36) 5.220
1× 10−3 119 51-55 (62) 5.250
5× 10−4 115 51-56 (62) 5.249
2× 10−4 35 53-57 (62) 5.249
1× 10−4 - 55-57 (62) 5.250
5× 10−5 -48 56-58 (62) -

4.5 Graphene

With TOLSHORT 10, B3LYP, SHRINK 48 96 and TOLDEE 7 we get the results
in figure 5. The are problems with and without FIXINDEX at a -8% lattice change and
a cutoff of 5× 10−5. All other cutoff values converge with and without FIXINDEX.
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Table 12: FMIXING for covergence with TOLSHORT 8 vs overlap tolerance for Full
projector

Lattice Volume (%) 1× 10−4 4× 10−5 2× 10−5 1.5× 10−5 1× 10−5

-10 50 50 50 50 50
-9 50 50 50 50 50
-8 50 50 50 50 50
-7 50 50 50 50 -
-6 50 50 50 50 -
-5 50 50 50 95 -
-4 50 50 50 50 -
-3 50 50 50 90 -
-2 50 50 50 70 50
-1 50 50 50 50 50
0 50 50 50 50 90
1 50 50 70 90 90
2 50 50 70 70 70
3 50 50 50 50 50
4 50 50 50 50 50
5 50 50 50 50 50

5 Simple vs Full projection - BCC Li

Running exactly the same inputs with the simple projector we find fewer converged
results for a tolerance <= 2× 10−5.
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Table 13: FMIXING for covergence with TOLSHORT 8 vs overlap tolerance for simple
projector

Lattice Volume (%) 1× 10−4 4× 10−5 2× 10−5 1.5× 10−5 1× 10−5

-10 50 50 50 50 50
-9 50 50 50 50 50
-8 50 50 50 50 50
-7 50 50 50 50 -
-6 50 50 50 - -
-5 50 50 - - -
-4 50 50 50 - -
-3 50 50 50 - -
-2 50 50 50 - -
-1 50 50 50 - 50
0 50 50 50 - -
1 50 50 - - -
2 50 50 - - 70
3 50 50 50 50 50
4 50 50 50 50 50
5 50 50 50 50 50

6 Conclusions and Further development

We have implemented the full projector method in CRYSTAL. This makes calculations
with high quality Gaussian basis sets, which suffer from linear dependence problems
in the original code, practical. Calculations can be reliably converged with a cutoff of
1× 10−4 with minimal effect on the geometry.

These developments were begun in CRYSTAL14 v1.0.3. The current development
version is a beta for CRYSTAL17 which is being tested and the new functionality is
already frozen. It is unlikely therefore that these developments will be included in the
first general release of CRYSTAL17 and Archer users requiring earlier access than this
should contact us. The developments will need further testing with the new version,
especially the CPHF which has added ’dynamic polarizabilty’ options which will need
to be modified to work with the eigenvector cutoff.

Other issues which should be investigated are

• A truncated SCF calculation needs to be tested with a properties calculation,
which wasn’t part of the work plan.

• The memory allocation for large k point grids in the Fermi energy calculation
can become an issue and needs further investigation.

• The performance of the routines that reconstruct the density matrix can also
become significant with large k point grids.
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