
4 Technical Report (publishable)
Abstract

In this report we detail the
development, deployment and testing
of a coupled model of LAMMPS and
OpenFOAM on ARCHER. In line with the
objectives of the project, we ported a
coupled code using CPL library to
ARCHER, developing automated testing
to check data exchange and scaling
tests up to 10,000 cores. Next, we
extended the capabilities of CPL library
to include the fully overlapping domains
required for geomechanics, including
topological and communications tests
and a range of LAMMPS-OpenFOAM
validation cases. A range of
documentation was developed with
scripts, to allow a novice user to
download and build in a single
command on ARCHER, as well as more
detailed instructions on the API with
example usage so more advanced users
can develop their own functions. This
required careful design of the user
interface and consideration of future
extension. Finally, scaling and
performance checking was performed
with serial and parallel optimisation,
along with load balancing. In addition to
the above work, a whole range of
additional functionality was developed
including OpenFOAM solver codes, a
strategy for poly-dispersed clumps on
large parallel systems, a set of extensible field and force objects
which can be unit tested and finally a novel mock coupling based
approach, which we believe can form the basis of a new way to
develop coupled models.

Introduction

Combining the discrete element method (DEM) and computational
fluid dynamics (CFD) is an essential step in the next generation of
geotechnical design tools. However, the problem is complex,
requiring the linking of techniques and models from two active areas

Figure 1: Granular DEM
simulation in LAMMPS
with particles coloured
by overlapping velocity
field from CFD
simulation in OpenFOAM

of research, each complex with many potential sources of
uncertainty. The project has aimed to solve this problem by
developing efficient, tested and minimal coupling between the
molecular dynamics code LAMMPS and the computational fluid
dynamics code OpenFOAM to run simulations on ARCHER. The
resultant system will be of use to anyone wanting to fluid-particle
systems; the relevant disciplines include geotechnical (civil)
engineering, geology, and petroleum engineering. Hitherto this
type of problem had not been simulated on ARCHER.

Specific examples of research it is in the process of enabling are:

- Seepage-induced instability including internal erosion. The
software developed is currently in use by Dr. Adnan Sufian
who is working to improve understanding of the mechanisms
whereby fluid flow can induce failure in dams and flood
embankments. Water seeps continuously and slowly through
embankment dams and flood embankments. If the structures
are poorly designed this flowing water can preferentially erode
the finer grains in the embankment. This erosion can develop
in a progressive manner and ultimately cause embankment
failure. Dr. Sufian is developing models using the software
where the flow of water through a sample of soil will be
simulated. During these simulations the movement of
particles will be closely monitored. These simulations will help
us better understand the link between particle movement
under seepage flow, the stresses on the particles and the flow
velocity.

- During earthquakes or during the construction of some
embankment structures there can be an increase in the
pressure of the water in the void space between grains
sufficiently high so as to cause failure. This phenomenon is
called liquefaction and it triggered the tragic Aberfan landslide
in 1966. Liquefaction also has cause significant damage
during the Japanese earthquake in 2011 and researchers from
the University of Tokyo (Dr. M. Otsubo working with Prof. R.
Kuwano) aim to use the software to improve understanding of
liquefaction.

- Researchers at the University of Cardiff are currently seeking
funding (from NERC) to support use of the code to simulate
segregation of minerals in lava flows. This research would
improve the understanding as to how platinum rich layers
develop in geological strata and ultimately benefit those
interpreting geological data to extra high-value minerals.

Sample input files for simulations relating to each of the following
three applications will be included in the project website.

Software Overview

The software aims to combine separate, modular, and tested codes
stored on separate repositories. In this way, we avoid the monolithic
and static packages typical of previous scientific software in order to
develop an open-source framework, linked to github repository
which can include the latest bug fixes and changes while allowing
the project to scale as more users and developers join. The
emphasis is on breaking the problem into separate software
packages which can be tested and developed as units. This division
of responsibility allows components to be unit tested, creates a new
framework for mocking coupled elements and provides Python
interfaces to allow rapid coupled development. As shown in Figure 2
the monolithic solution is a bundled OpenFOAM and LAMMPS
executable. The first level of division splits these codes into
separate executables each linked to a shared library which handles
all communication (CPL). In this way, the communication and
processor mapping itself can be tested in isolation, before each part
of OpenFOAM and LAMMPS can be linked to a mock script for
development and testing. The interface between the CPL library and
the two codes is handled by application code (APPS), stored on
separate repository and designed to provide bespoke functionality
for coupling. These APPS use common design patterns from the CPL
libraries utilities folder in the form of unit-tested array, force and
field objects in order to allow common functionality to be validated
and reused for other coupling type simulations (e.g. MD-CFD domain
decomposition see Mohamed and Mohamad, 2009).

CPL library

CPL library emerged from from Edward Smith's Phd work (Smith
2014) and was extended via two successful dCSE projects (Smith et
al 2012, 2013). CPL aims to provide a minimal set of commands,
similar to MPI, which link two codes together. Coupling is achieved
through just four key commands,

 CPL_init(ream)
 CPL_Setup(CART_COMM, domain_size, origin, ncells)
 CPL_send(A)

 CPL_recv(A)

The minimum of information is required, the domain size, the
number of cells and the Cartesian layout of processors. Everything
else is handled by CPL library from this minimal information
(although a more complex, lower level interface is possible).
Averaging is performed on a uniform grid of cells, a key design
decision to simplify coupled domain setup based on the assumption
that all complex grids can be mapped to a uniform grid.

The aim of this work was to extend this to the fully overlapping case
required for granular mechanics (Fig 3b) with all information
exchanged. This required new inputs to switch to the granular case
and to allow multiple processors in the y-direction (removing a
previous limitation of the software). In addition, this development
had to be backward compatible for users of the previous MD-CFD
style of coupling. To this end, a new bit encoding system was
developed to allow easy swapping of send and receive information
types and an input system based on C++ maps.

Figure 2: Schematic of coupled framework showing
the division into parts and the resulting tests that
become possible

(a)Schematic of CPL coupling
prior to eCSE project

(b)Schematic of CPL coupling
enabled by project

Figure 3: Previous and new topologies supported as a result of this
project, note y axis is the vertical and horizontal could be x or z.

LAMMPS, GranLAMMPS and the LAMMP_APP

GranLAMMPS is a custom fork of the main LAMMPS repository which
allows simulation of soil mechanics laboratory element tests (e.g.
Hanley et al.(2014), Huang et al (2014), Shire et al. (2014)). It
was developed by Dr. Kevin Hanley working with Dr. Catherine
O'Sullivan and their collaborators. Although closed source, the
modular nature of the CPL APPS and sockets developed in this
project means that the granular branch of LAMMPS can use the
developments with minimal adaptation, with the GranLAMMPS
branch available to collaborators and developments aiming to be
included in the main version of LAMMPS in the future.

LAMMPS works through a series of user defined fixes. These are
objects the user can define by inheriting from a base class called fix
with a pre-defined structure. These are automatically registered with
LAMMPS and instantiated (created when LAMMPS runs). The user
can define a range of hook functions with names like post_setup or
pre_force, which can be used to inject code at the appropriate
location in the overall LAMMPS solver (i.e. after the setup or before
the force calculation respectively). The addition code is included in
LAMMPS by writing user add on packages which can be included
when LAMMPS is complied. Provided LAMMPS has been built with
the extra package, they can then be used, often by keywords to
switch these on from the user input.

The coupler application has been developed to be applied entirely
as a fix, this fits within the code design philosophy of LAMMPS and
allows a single line of input to switch coupled simulation or off, with
a single command of the form:

fix ID group cpl/init region all forcetype X sendtype Y

The first two arguments are standard LAMMPS: ID = user-assigned
name for the fix group-ID = ID of the group of atoms to apply the fix
to The next part, cpl/init, is the "style", i.e. the fixes' name. "region
all" specifies that the fix is applied to the entire box in space.
forcetype X allows you to specify which constraint force system to
use, including

1) test -- A simple test for debugging (sends cell indices)
2) Flekkoy -- stress based coupling
3) Velocity -- applies (U_particle - U_CFD) (2004) 4) Drag -- base
drag class for granular type drag forces and extended to a range of
the main drag models.

However, this input system has been designed so the user can add
anything they want here easily with any arguments cascaded using
a C++ arg_map to a user defined extensible force object, as
detailed in the tutorial here:
http://www.cpl-library.org/wiki/index.php/Main_Page. The Field and
Force objects have a full unit-testing framework, an extensive range
of drag models have been developed and they provide interpolation
and overlap libraries.

The sendtype Y specify which data is sent to the CFD solver, which
can be any combination of inputs (note they are additive such as a)
VEL b) NBIN c) STRESS d) FORCE e) FORCECOEFF f) VOIDRATIO as
well as pre-defined collections.

Another major consideration of this project was an efficient method
for treating polydisperse systems, i.e. systems with a wide range of
particle sizes. After extensive reading, a strategy was developed to
use compound spheres or clumps based on multiple particles and a
volume penalisation method Tsuji (1993) in order to model
polydispersed systems. This is attractive from an HPC perspective as
it allows us to use of the highly optimised parallel framework of
LAMMPS which would not be possible using single large spheres
which may be spread over multiple processes.

OpenFOAM, SediFOAM and the OpenFOAM_APP

A major part of this project involved establishing the correct form of
CFD solver to use. The original proposal suggested the use of the
Navier Stokes equation in the form given by Tsuji (1993), although
many others exist (Xu & Yu 1997; Kafui et al. 2002). After careful
literature review, it was deemed that SediFOAM by Sun et al (2016)
at https://github.com/xiaoh/sediFoam was the most promising
candidate for coupled simulation. Some changes were made to the
solver, adapting SediFOAM for use in the low Reynolds number
domains of interest for the target application and changing the
algorithm to receive all information through CPL library from the

https://github.com/xiaoh/sediFoam

separate LAMMPS code in line with the modular approach enabled
by CPL library. SediFOAM has been extensively validated and
includes a number of consideration which stabilise the multi-phase
solver for OpenFOAM, based on the PhD thesis of Henrik Rusche
(2002). The ideas is as follows.

1) Exclude pressure gradient from the momentum prediction step,
calculate only a single Jacobi iteration to find a guess of the velocity
before the PISO pressure solver is applied to the particle/fluid
mixture.

2) The gravity and drag term is applied inside the pressure equation,
in a process known as semi-implicit coupling (Issa 1986).

3) The combined fluid/particle pressure equation is used to enforce
mass conservation for the mixture and the flux is adjusted instead
of the velocity field.

4) Finally the velocity field is obtained from a reconstruction of the
flux correction. This approach is used to improve the numerical
stability of a granular simulation. However, it was found that the
case of Couette flow, the correct solution is not obtained from this
method, and a full “Solve” is required in step 1) above instead of a
single “Relax” step to get correct results for Couette flow case.

This highlights a common feature of CFD: balancing accuracy and
stability of a numerical scheme. It is therefore unclear if this is the
right choice of solver for all cases, so the strategy used in this
project was to provide software which allows a range of testing tools
in the form of mock coupled examples and a socket to allow easy
development of other coupled solvers as needed. A few other
porous solvers developed during this project are also provided in the
OpenFOAM_APP source file and these can be tested for each case to
decide suitability.

Deployment

The CPL library software is kept very simple, entirely self contained
with no dependencies, requiring only a Fortran compiler for the core
code. The C++ wrapper needs to use a compiler which supports the
2011 standard and the Python wrapper is based on Python 2.7 using
Numpy and Pytest.

The main deployment challenge comes from compiling the codes
which are to be coupled, namely OpenFOAM and LAMMPS, external
software packages which we have limited control over but want to
allow the latest version from the repository to be used. We therefore
aim to keep both OpenFOAM and LAMMPS as close to the repository

version as possible, with every change representing a maintenance
burden.

LAMMPS builds fairly quickly and the required additions for coupled
granular simulation have been made entirely self-contained using
the package system, so building the coupled version of LAMMPS is
fairly trivial. A major part of the early work in this project was to
make a single USER-CPL module to ensure deployment of the
coupled model with LAMMPS as simple as possible. A patch is still
required on ARCHER as described below.

OpenFOAM takes over 8 hours to build, this prevents test
automation using a continuous integration platform and makes it
very time consuming to develop and provide building instructions.
The solution developed for ARCHER is to allow patching of an
existing OpenFOAM installation with minimal rebuild required.

The reason a patch is essential in both OpenFOAM and LAMMPS on
ARCHER, is because we need to run the coupled codes in Multiple
Processor Multiple Data (MPMD) mode, with a command of the form,
mpiexec -n 64 ./md: -n 8 ./cfd
where they share a single MPI_COMM_WORLD. Both LAMMPS and
OpenFOAM assume they are the only code in the
MPI_COMM_WORLD so this must be patched. Our previous solution
to this problem, using MPI ports connected two unrelated MPI jobs
each with an MPI_COMM_WORLD. However, this is not possible on
ARCHER as Cray do not support processor spawning or MPI_port.
This means that we are back to the MPMD strategy and maintaining
a separate patch for every version of both MD and CFD code.

An Anaconda based approach was also developed, which allows the
code to be downloaded into a virtual environment which contains all
dependencies, including MPI (tested on the local Imperial
supercomputer and a BP cluster). This did not work on the Cray
based ARCHER where a wrapper is required to run MPI jobs (aprun)
and node allocation was found to not work as expected. A solution
using the ABI interface module was put on hold as we waited for
GCC7.2 which has only recently become available, and is currently
being developed.

Singularity (HPC for Docker) was also developed for CPL library itself
and some minor scripts. As singularity and Docker are not currently
supported on ARCHER, this solutions will be adapted when these
become available.

Testing and Validation

One of the main aims of this project was to implement modern
software practices such as design to an interface, test driven
development, continuous integration and version control. This is
made difficult by the nature of MPI programs which require
considerable setup before a run, including MPI initialisation and the
creation of an appropriate communicator which includes a number
of opaque side effects. The use of coupled simulation makes these
even more challenging as the setup of two separate codes is
required before we can even begin testing. We have approached
this by testing CPL library in isolation; then separating off the entire
array, field and force system to test in serial; before building a
validated range of drag force models on top of this and finally
developing a system of coupled mocks which use dummy Python
scripts to test the coupled codes feature by feature. In this section,
we give a number of examples of how we use the idea of mocks to
test the coupled LAMMPS and OpenFOAM, gradually building up a
framework which we can have faith in for use in coupled granular
simulation.

The starting point is to ensure the validity of CPL library, achieved
with basic tests of CPL_send and CPL_recv operations on a wide
range of processor topologies for codes in Fortran, C++ and Python,
all automated using the Travis CI integration from Github.

A major part of the project was to split off the entire granular drag
force implementation into a field and force objects, which allows
complex coupling based serial operations to be developed using test
driven development, resulting in a comprehensive unit testing
framework. This includes both a calculation of sphere-cube overlap,
interpolation within cells (which requires communication to
exchange halo cells) and a wide range of other functionality all
tested using googletest, an example of some of the unit-tests from
the googletest output are shown below:
[----------] 27 tests from CPL_Force_Test
[RUN] CPL_Force_Test.test_CPL_array_size
[RUN] CPL_Force_Test.test_CPL_field_name
[RUN] CPL_Force_Test.test_CPL_field_setters
[RUN] CPL_Force_Test.test_CPL_field_overlap
[RUN] CPL_Force_Test.test_CPL_field_getters
[RUN] CPL_Force_Test.test_CPL_force_constructor
[RUN] CPL_Force_Test.test_CPL_force_get_set_field
[RUN] CPL_Force_Test.test_CPL_get_cell
…
[RUN] CPL_Force_Test.test_CPL_Force_get_force
[RUN] CPL_Force_Test.test_CPL_force_internalfields
[RUN] CPL_Force_Test.test_CPLForce_Drag

https://github.com/google/googletest

[RUN] CPL_Force_Test.test_CPLForce_Drag_argmap
[RUN] CPL_Force_Test.test_CPLForce_Drag_check_volSumsFsum
[RUN] CPL_Force_Test.test_CPLForce_Drag_check_overlap_field
[RUN] CPL_Force_Test.test_Granular_CPL_inhereted
[RUN] CPL_Force_Test.test_Granular_CPL_forces
[PASSED] 27 tests.

Memory allocation and leak checking is performed as part of the
test suite using Valgrind to check all new development both locally
and on Travis CI.

The range of possible drag models in coupled DEM is extensive,
including Ergun, Di Felice, Tang, Tenneti and BVK (Ergun 1952; Di
Felice 1994; Tang et al. 2014; Tenneti et al. 2011; Beetstra et al.
2007). These have all been implemented using the CPL_force object
framework and are automatically tested by comparison to an
existing implementation (https://github.com/chrisk314/drag-utils).

Validation of LAMMPS with coupling is done through a range of test
cases. The test cases suggested in the original proposal were found
to be too complex and instead a range of simpler cases were used,
each designed to test one additional aspect of the coupled

Figure 4: Bouncing LAMMPS particle with force field from coupled
exchange compared to analytical solution and regression test

https://github.com/chrisk314/drag-utils

simulation. Starting from a single particle in a periodic box, we apply
a field obtained through the coupler, then add the same single
particle bouncing on a wall, then the particle interacting with a fluid
field through drag and buoyancy, then flow over an FCC lattice. Each
case has analytical or other solutions we can compare to, for
example the bouncing ball, shown in Figure 4, can be tested against
constant acceleration equations for most of the trajectory, while the
(non-linear) interaction with the wall is tested with a regression test
to a previous simulation.

The coupling to a dummy code can then test spatially and
temporally varying force fields; probe different processor topologies
and the communication exchange within LAMMPS; ensure the
correct application of the drag force and the correct application of
dynamics within LAMMPS. In this way, the coupled dummy scripts
can be seen to work like the concept of a mock class, allowing
values to be injected and exploring how the code responds, thereby
separating the problem into its various parts.

Figure 5: SediFOAM simulation (circles) compared to the Couette
flow analytical solution (lines) with L2 norm assertion test.

The OpenFOAM simulations are based on SediFOAM (Sun et al ,
2016), a complex multi-phase solver based on years of research in
two fluid modelling and additions for turbulent granular flows. To
ensure this is valid for our problem, we start with a simple boundary
enforced hydrostatic gradient which is the basis for much of the
work in sediment flows and is used here to ensure the pressure
solver is working as expected. Another canonical test case with an
analytical solution is Couette flow, Figure 5, which tests the diffusive
part of the fluid simulation is working as expected. We start with the
case with zero porosity, which is coupled to a mock Python script
and matched to the analytical solution with an assertion based on
the L2 norm error. Next, to test the effect of porosity and drag force
on the fluid solver, a region of constraint force and zero porosity is
applied by a mock Python code, as shown in Figure 6. The part of
the domain above this can again be matched to the Couette
analytical solution, validating that the drag force works as expected.

Figure 6: Couette flow with drag force and porosity applied in a local
region with evolution checked against analytical solution by python
dummy script.

The next model looks at applying a porosity that is representative of
a DEM simulation, with the MOCK code reproducing a controlled FCC
lattice. As a DEM simulation would be averaged for this case and
pass a uniform field, the mock field is identical and we can therefore
developed the CFD code in isolation and ensure this works as
expected.

import numpy as np
from mpi4py import MPI
from cplpy import CPL

#initialise MPI
comm = MPI.COMM_WORLD
CPL = CPL()
MD_COMM = CPL.init(CPL.MD_REALM)
CPL.setup_md(MD_COMM.Create_cart([1, 1, 1]),
 xyzL=[1., 1., 1.], xyz_orig=[0., 0., 0.])

#Setup send and recv buffers
recvbuf, sendbuf = CPL.get_arrays(recv_size=9, send_size=8)

#FCC properties
dp = 0.01; phi = 0.74; mu = 1e-3; K = 435.
cvol =CPL.get("dx")*CPL.get("dy")*CPL.get("dz")
cnp = cvol*phi/((np.pi/6)*dp**3); cCd = cnp*3*np.pi*mu*dp*K

#Main time loop
for time in range(501):
 # Recv data [Ux,Uy,Uz,dPx,dPy, dPz, dTaux, dTauy, dTauz]
 recvbuf, ierr = CPL.recv(recvbuf)
 Uy = recvbuf[1,:,:,:]
 gradPy = recvbuf[4,:,:,:]

 # Send data [Ux, Uy, Uz, Fx, Fy, Fz, Cd, e]
 sendbuf[4,:,:,:] = -cCd*Uy + (cvol*phi)*gradPy
 sendbuf[6,:,:,:] = cCd*np.ones_like(Uy)
 sendbuf[7,:,:,:] = 1 - phi
 CPL.send(sendbuf)

CPL.finalize()
MPI.Finalize()

Figure 7: Snippet of Python mock code to be linked to OpenFOAM to
mock LAMMPS FCC lattice

Once the CFD code has been tested in isolation, we setup an FCC
lattice in LAMMPS and apply the corresponding information from a
dummy script modelling the CFD code, in order to debug the DEM

code separately. The two validated codes can then be connected
directly and any problems resulting from this final “integration test”
therefore isolate the problem and tweaks to the input system
applied to fix this.

In this way, the CPL framework provides an elegant way of
developing software with integrated testing and allows two complex
codes to be developed separately. This also allows the automation of
the test of each code against the various releases, so any errors
introduced by future changes to OpenFOAM, LAMMPS, CPL library
(as well as upstream dependencies such as MPI) can be isolated to
one or other code.

Scaling

Choosing a meaningful metric for scaling of a coupled simulation is
not a trivial problem. As we are linking two existing codes, scaling is
limited to the worst of these codes. The DEM/MD code is often the
rate limiting step and in the previous dCSE reports (Smith et al 2012
and Smith et al 2013) we simply showed that scaling of a coupled
MD code was comparable to an uncoupled case. However, a good
load balancing strategy should prevent the DEM being a bottleneck;
so we consider first the relative cost of both codes to establish the
ratio of system sizes to get good performance. We have then
developed a custom framework to model the scaling of the CPL
library software developed during this project.

Serial Optimisation

Before considering a parallel run on ARCHER, it is essential that the
serial efficiency of any newly developed code is optimised. This is
achieved by profiling on a local compute using Valgrind's
cachegrind, with the output shown here:

It is clear from Figure 8 that get_force and pre_force, both new
routines developed in this project, dominate the calculation. Given
the extensive calculation required for the intersection of a
sphere/cube, it is not surprising that this operation is expensive (see
self time of overlap<hexahderon> in Figure 8). The overlap
calculation itself is developed for the most general possible case
and uses the library developed by
(http://dx.doi.org/10.1016/j.jcp.2016.02.003), a header only C++
library. A range of unit tests were written to ensure the outputs of
this library gave the expected results before incorporation into the
CPL_field class described above.

Based on the profiling, a range of optimisations were undertaken. In
order to accelerate the simulation, only spheres which are within a
radius of the cell's edge are considered for overlap calculation, with
the whole spherical volume simply added to the cell if not. Spheres
which are only near one surface are calculated using the spherical
cap calculation. Only the very rare cases of spheres located near the
edge or corner of a cell are then passed to the fully general overlap
library calculation. These changes resulted in a speedup of orders of
magnitude. The accelerated approach detailed here is then checked
against the overlap library for millions of random particle positions

Figure 8: Output from cachegrind coupled LAMMPS case

http://dx.doi.org/10.1016/j.jcp.2016.02.003

to ensure this accelerated code gives the same results as the full
overlap calculation. In addition, memory allocations were greatly
reduced through the use of pointers to allow a further speed up in
the various code developments.

Serial Scaling

We measured ratio of OpenFOAM and LAMMPS codes as a function
of number of cells or particles respectively in a representative
simulation (hydrostatic for OpenFOAM, FCC lattice for LAMMPS). The
serial scaling suggests that designing systems with approximately
two hundred particles per cell will give good load balancing.

Figure 9: Ratio of calculation time of SediFOAM to LAMMPS as a function of
number of cells or particles

Parallel Scaling

The basic premise of CPL library is to set up only local mapping
between processes which overlap physically, using a mapping set
up by MPI_graph. Each CFD processor receives data from one or
more DEM processor, with MPI_Wait used to hold until all
overlapping information has arrived before unpacking and returning
the data to the user. As all communication is local, there is no
expected bottleneck to good scaling.

Figure 10: Weak scaling of CPL library with both codes using the
same number of processors

However, we want to ensure that the mapping scales well in
coupling of any two coupled codes for any situation. A parallel
scaling tests is developed which uses a minimal Fortran script
compiled into two executables flagged as CFD and DEM and this is
run with both connected as part of a coupled simulation. In each
case, all coupled communication is local to the overlapping
processors, each of which always has 603 cells (weak scaling). The
arbitrary calculation sends three values for each of the 603 cell on
each processor, receives the same volume of data and then checks
it is correct, before performing an arbitrary calculation. This is
repeated twenty times for each run. The smallest size uses 24
processes in both the CFD and DEM codes. The system is then
scaled up to 5016 processes per code (10,032 cores in total) and the
time taken is calculated. As the actual calculation is identical each
time on a given processor, the coupled communication is the only
change and we obtain a good insight to the scaling of the system,
shown in Figure 10. We use the Craypat tool on ARCHER to check
overhead and costs due to parallel communication, shown in Table
1. It is seen that the majority of the time is spent waiting for the
messages to arrive. All broadcast and barrier communications are in
the setup so can be ignored. Packaging and unpacking the data is
seen to take about 5% of the time in CPL send and CPL_recv
respectivly. This suggests that coupled scaling is working as
expected and, given the large amounts of data sent, the scaling of
70% at 10,000 cores seems reasonable. As the data is used directly
after CPL_recv, non-blocking communication are not possible

without reorganising of the coupling algorithm, a possible future
consideration.

Table 1: Cray pat profile of parallel code

Conclusions

In this work, OpenFOAM was coupled to LAMMPS using CPL library
with the code deployed on ARCHER. The development included an
extension to allow data exchange with fully overlapping domains;
design of a modular, extensible and unit-tested drag force
framework for granular systems; scaling studies of both the CPL
library and LAMMPS-OpenFOAM; documentation and interface
design for use by both novice users and programmers; deployment
on ARCHER using a single script and Anaconda packages; as well as
the development of a modular framework which facilitates testing of
components and mocking of coupled runs.

The developed software contains many tests and the aim was to
develop validated building blocks which could be used to construct
coupled simulation projects. As an instability in either code is very
difficult to predict and almost impossible to debug in a monolithic
coupled executable, we focused on splitting the software and
designing tools to probe the coupled problem. By making testing
and coupled mock scripts an integral part of the development
process, we hope to develop more reliable coupled software and
provide easier deployment on HPC platforms.

Acknowledgement

“This work was funded under the embedded CSE programme of the
ARCHER UK National Supercomputing Service
(http://www.archer.ac.uk)” Dr. Adnan Sufian funded via EPSRC grant
EP/P010393/1 provided invaluable assistance on this project.

References

 Hanley, K.J., O’Sullivan, C. ,and Huang, X.(2014) “Particle-scale
mechanics of sand crushing in compression and shearing
using DEM” Soils and Foundations, 55(5), pp 1100–1112,
doi:10.1016/j.sandf.2015.09.011

 Huang, X., O’Sullivan, C., Hanley, K. J., Kwok, C.Y. (2014) “DEM
Analysis of the State Parameter”, Géotechnique 64(12)
954-965 DOI 10.1680/geot./14-P-013

 Shire, T.; O’Sullivan, C. ; Fannin, R.J.; Hanley, K. (2014) “Fabric
and effective stress distribution in internally unstable soils”
ASCE Journal of Geotechnical and Geoenvironmental
Engineering, 140(12) DOI 10.1061/
(ASCE)GT.1943-5606.0001184

 Smith, E. R. , Heyes, D. M. , Dini, D. and Zaki, T. A. (2015) “A
localized momentum constraint for nonequilibrium molecular
dynamics simulations” J. Chem. Phys. 142, 074110 (2015)
[hdl.handle.net/10044/1/21849]

 Smith, E. R. (2014) On the coupling of molecular dynamics to
continuum computational fluid dynamics PhD Thesis Imperial
College London

 Smith E, Anton L, (2012), Scalable coupling of Molecular
Dynamics (MD) and Direct Numerical Simulation (DNS) of
multi-scale flows,
http://www.hector.ac.uk/cse/distributedcse/reports/transflow01
/transflow01.pdf (dCSE report)

 Smith E, Trevelyan D, Zaki T, 2013, Scalable coupling of
Molecular Dynamics (MD) and Direct Numerical Simulation
(DNS) of Multi-scale Flows — Part 2

http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/P010393/1
http://www.archer.ac.uk/

http://www.hector.ac.uk/cse/distributedcse/reports/transflow02
/transflow02.pdf. (dCSE report)

 Tsuji, Y., T. Kawaguchi, and T. Tanaka (1993). Discrete particle
simulation of two dimensional fluidized bed. Powder
Technology 77, 79-87.

 Xu, B. H. & Yu, A. B. (1997). Numerical simulation of the gas
solid flow in a fluidized bed by combining discrete particle
method with computational fluid dynamics. Chem. Eng. Sci.
52, 2785–2809

 R. Sun and H. Xiao. 'SediFoam: A general-purpose,
open-source CFD-DEM solver for particle-laden flows with
emphasis on sediment transport'. Computers and
Geosciences, 89, 207-219, 2016.
DOI:10.1016/j.cageo.2016.01.011

 Mohamed, K. M. & Mohamad, A. A. 2009 A review of the
development of hybrid atomistic-continuum methods for
dense fluids. Microfluidics and Nanofluidics 8, 283.

 Issa, Raad. (1986). Solution of the Implicit Discretized Fluid
Flow Equations by Operator Splitting. Journal of Computational
Physics. 62. 10.1016/0021-9991(86)90099-9.

 Rushe, H. (2002) Computational Fluid Dynamics of Dispersed
Two-Phase Flows at High Phase Fractions PhD Thesis Imperial
College London

 Kafui, K.D., Thornton, C. & Adams, M.J., 2002. Discrete

particle-continuum fluid modelling of gas-solid fluidised beds.
Chemical Engineering Science, 57(13), pp.2395–2410.

 Xu, B.H. & Yu, a. B., 1997. Numerical simulation of the
gas-solid flow in a fluidized bed by combining discrete particle
method with computational fluid dynamics. Chemical
Engineering Science, 52(16), pp.2785–2809. Available at:
http://www.sciencedirect.com/science/article/pii/S0009250997
00081X.

 Beetstra, R., van der Hoef, M.A. & Kuipers, J.A.M., 2007. Drag

force of intermediate Reynolds number flow past mono- and
bidisperse arrays of spheres. AIChE Journal, 53(2),
pp.489–501. Available at:
http://doi.wiley.com/10.1002/aic.11065.

 Ergun, S., 1952. Fluid Flow Through Packed Columns. Journal
of Chemical Engineering Progress, 48(2), pp.89–94.

http://doi.wiley.com/10.1002/aic.11065

 Di Felice, R.D., 1994. The voidage function for fluid-particle

interaction systems. Int. J. Multiphase Flow, 20(1),
pp.153–159.

 Tang, Y. et al., 2014. A methodology for highly accurate results
of direct numerical simulations: Drag force in dense gas-solid
flows at intermediate Reynolds number. International Journal
of Multiphase Flow, 62, pp.73–86.

 Tenneti, S., Garg, R. & Subramaniam, S., 2011. Drag law for

monodisperse gas–solid systems using particle-resolved direct
numerical simulation of flow past fixed assemblies of spheres.
International Journal of Multiphase Flow, 37(9), pp.1072–1092.
Available at:
http://linkinghub.elsevier.com/retrieve/pii/S030193221100117
0.

	1 Publishable Summary
	1.1 Achievement of objectives
	1.2 Project description
	1.3 Summary of the software

	2 Future science and impact
	2.1 Performance Improvement
	2.2 Additional Functionality
	2.3 Sustainability of Software
	2.4 Usablity of software
	2.5 Intrinsic value of the software
	2.6 Enabled Science and Impact

	3 Project summary (non publishable)
	3.1 Workpackage summary
	3.2 Reporting statistics
	Effort

	3.3 Engagement and publications

	4 Technical Report (publishable)
	Abstract
	Introduction
	Software Overview
	CPL library
	LAMMPS, GranLAMMPS and the LAMMP_APP
	OpenFOAM, SediFOAM and the OpenFOAM_APP

	Deployment
	Testing and Validation
	Scaling
	Serial Optimisation
	Serial Scaling
	Parallel Scaling

	Conclusions
	Acknowledgement
	References

