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Abstract

In  this  report  we  detail  the
development,  deployment  and  testing
of  a  coupled  model  of  LAMMPS  and
OpenFOAM on ARCHER. In line with the
objectives  of  the project,  we ported a
coupled  code  using  CPL  library  to
ARCHER, developing automated testing
to  check  data  exchange  and  scaling
tests  up  to  10,000  cores.  Next,  we
extended the capabilities of CPL library
to include the fully overlapping domains
required  for  geomechanics,  including
topological  and  communications  tests
and  a  range  of  LAMMPS-OpenFOAM
validation  cases.  A  range  of
documentation  was  developed  with
scripts,  to  allow  a  novice  user  to
download  and  build  in  a  single
command on ARCHER, as well as more
detailed  instructions  on  the  API  with
example usage so more advanced users
can  develop  their  own  functions.  This
required  careful  design  of  the  user
interface  and  consideration  of  future
extension.  Finally,  scaling  and
performance  checking  was  performed
with  serial  and  parallel  optimisation,
along with load balancing. In addition to
the  above  work,  a  whole  range  of
additional  functionality  was  developed
including  OpenFOAM  solver  codes,  a
strategy  for  poly-dispersed  clumps  on
large parallel  systems, a set of  extensible  field and force objects
which can be unit tested and finally a novel mock coupling based
approach,  which we believe can form the basis  of  a new way to
develop coupled models.

Introduction

Combining the discrete element method (DEM) and computational
fluid dynamics (CFD) is an essential step in the next generation of
geotechnical  design  tools.  However,  the  problem  is  complex,
requiring the linking of techniques and models from two active areas

Figure 1: Granular DEM 
simulation in LAMMPS 
with particles coloured 
by overlapping velocity 
field from CFD 
simulation in OpenFOAM



of  research,  each  complex  with  many  potential  sources  of
uncertainty.   The  project  has  aimed  to  solve  this  problem  by
developing  efficient,  tested  and  minimal  coupling  between  the
molecular  dynamics  code  LAMMPS  and  the  computational  fluid
dynamics  code  OpenFOAM  to  run  simulations  on  ARCHER.   The
resultant system will be of use to anyone wanting to fluid-particle
systems;  the  relevant  disciplines  include  geotechnical  (civil)
engineering,  geology,  and  petroleum  engineering.   Hitherto  this
type of problem had not been simulated on ARCHER.  

Specific examples of research it is in the process of enabling are:

- Seepage-induced  instability  including  internal  erosion.   The
software  developed is  currently  in  use by Dr.  Adnan Sufian
who is working to improve understanding of the mechanisms
whereby  fluid  flow  can  induce  failure  in  dams  and  flood
embankments.  Water seeps continuously and slowly through
embankment dams and flood embankments.  If the structures
are poorly designed this flowing water can preferentially erode
the finer grains in the embankment.  This erosion can develop
in a progressive manner and ultimately  cause embankment
failure.   Dr.  Sufian is  developing models  using the software
where  the  flow  of  water  through  a  sample  of  soil  will  be
simulated.   During  these  simulations  the  movement  of
particles will be closely monitored.  These simulations will help
us  better  understand  the  link  between  particle  movement
under seepage flow,  the stresses on the particles and the flow
velocity.

- During  earthquakes  or  during  the  construction  of  some
embankment  structures  there  can  be  an  increase  in  the
pressure  of  the  water  in  the  void  space  between  grains
sufficiently high so as to cause failure.  This phenomenon is
called liquefaction and it triggered the tragic Aberfan landslide
in  1966.   Liquefaction  also  has  cause  significant  damage
during the Japanese earthquake in 2011 and researchers from
the University of  Tokyo (Dr.  M. Otsubo working with Prof.  R.
Kuwano) aim to use the software to improve understanding of
liquefaction.

- Researchers at the University of Cardiff are currently seeking
funding (from NERC) to support use of the code to simulate
segregation  of  minerals  in  lava flows.   This  research would
improve  the  understanding  as  to  how  platinum rich  layers
develop  in  geological  strata  and  ultimately  benefit  those
interpreting geological data to extra high-value minerals.  

Sample input files for simulations relating to each of the following
three applications will be included in the project website.



Software Overview

The software aims to combine separate, modular, and tested codes
stored on separate repositories. In this way, we avoid the monolithic
and static packages typical of previous scientific software in order to
develop  an  open-source  framework,  linked  to  github  repository
which can include the latest bug fixes and changes while allowing
the  project  to  scale  as  more  users  and  developers  join.  The
emphasis  is  on  breaking  the  problem  into  separate  software
packages which can be tested and developed as units. This division
of responsibility allows components to be unit tested, creates a new
framework  for  mocking  coupled  elements  and  provides  Python
interfaces to allow rapid coupled development. As shown in Figure 2
the  monolithic  solution  is  a  bundled  OpenFOAM  and  LAMMPS
executable.  The  first  level  of  division  splits  these  codes  into
separate executables each linked to a shared library which handles
all  communication  (CPL).  In  this  way,  the  communication  and
processor mapping itself can be tested in isolation, before each part
of  OpenFOAM  and  LAMMPS  can  be  linked  to  a  mock  script  for
development and testing. The interface between the CPL library and
the  two  codes  is  handled  by  application  code  (APPS),  stored  on
separate repository and designed to provide bespoke functionality
for coupling. These APPS use common design patterns from the CPL
libraries utilities folder in the form of unit-tested array,  force and
field objects in order to allow common functionality to be validated
and reused for other coupling type simulations (e.g. MD-CFD domain
decomposition see Mohamed and Mohamad, 2009). 

CPL library

CPL library  emerged from from Edward  Smith's  Phd  work  (Smith
2014) and was extended via two successful dCSE projects (Smith et
al 2012, 2013). CPL aims to provide a minimal set of commands,
similar to MPI, which link two codes together. Coupling is achieved
through just four key commands, 

 CPL_init(ream)
 CPL_Setup(CART_COMM, domain_size, origin, ncells)
 CPL_send(A)

 CPL_recv(A)

The  minimum  of  information  is  required,  the  domain  size,  the
number of cells and the Cartesian layout of processors. Everything
else  is  handled  by  CPL  library  from  this  minimal  information
(although  a  more  complex,  lower  level  interface  is  possible).
Averaging  is  performed  on  a  uniform grid  of  cells,  a  key  design
decision to simplify coupled domain setup based on the assumption
that all complex grids can be mapped to a uniform grid. 



The aim of this work was to extend this to the fully overlapping case
required  for  granular  mechanics  (Fig  3b)  with  all  information
exchanged. This required new inputs to switch to the granular case
and  to  allow  multiple  processors  in  the  y-direction  (removing  a
previous limitation of the software).  In addition,  this development
had to be backward compatible for users of the previous MD-CFD
style  of  coupling.  To  this  end,  a  new  bit  encoding  system  was
developed to allow easy swapping of send and receive information
types and an input system based on C++ maps.

Figure 2: Schematic of coupled framework showing 
the division into parts and the resulting tests that 
become possible



(a)Schematic  of  CPL  coupling
prior to eCSE project

(b)Schematic of CPL coupling
enabled by project

Figure 3: Previous and new topologies supported as a result of this 
project, note y axis is the vertical and horizontal could be x or z.

LAMMPS, GranLAMMPS and the LAMMP_APP

GranLAMMPS is a custom fork of the main LAMMPS repository which
allows simulation of soil mechanics  laboratory element  tests (e.g.
Hanley et  al.(2014),  Huang et al  (2014),  Shire  et al. (2014)). It
was  developed  by  Dr.  Kevin  Hanley  working  with  Dr.  Catherine
O'Sullivan  and  their  collaborators.  Although  closed  source,  the
modular  nature  of  the  CPL  APPS  and  sockets  developed  in  this
project  means  that  the  granular  branch of  LAMMPS can  use  the
developments  with  minimal  adaptation,  with  the  GranLAMMPS
branch available  to collaborators  and developments aiming to be
included in the main version of LAMMPS in the future.

LAMMPS works  through  a  series  of  user  defined fixes.  These are
objects the user can define by inheriting from a base class called fix
with a pre-defined structure. These are automatically registered with
LAMMPS and instantiated (created when LAMMPS runs).  The user
can define a range of hook functions with names like post_setup or
pre_force,  which  can  be  used  to  inject  code  at  the  appropriate
location  in the overall LAMMPS solver (i.e. after the setup or before
the force calculation respectively). The addition code is included in
LAMMPS by writing user add on packages which can be included
when LAMMPS is complied.  Provided LAMMPS has been built  with
the extra package, they can then be used, often by keywords to
switch these on from the user input. 

The coupler application has been developed to be applied entirely
as a fix, this fits within the code design philosophy of LAMMPS and
allows a single line of input to switch coupled simulation or off, with
a single command of the form:

fix ID group cpl/init region all forcetype X sendtype Y 



The first two arguments are standard LAMMPS: ID = user-assigned
name for the fix group-ID = ID of the group of atoms to apply the fix
to The next part, cpl/init, is the "style", i.e. the fixes' name. "region
all"  specifies  that  the  fix  is  applied  to  the  entire  box  in  space.
forcetype X allows you to specify which constraint force system to
use, including 

1) test -- A simple test for debugging (sends cell indices) 
2) Flekkoy -- stress based coupling 
3) Velocity  --  applies (U_particle  -  U_CFD) (2004)  4)  Drag --  base
drag class for granular type drag forces and extended to a range of
the main drag models. 

However, this input system has been designed so the user can add 
anything they want here easily with any arguments cascaded using 
a C++ arg_map to a user defined extensible force object, as 
detailed in the tutorial here: 
http://www.cpl-library.org/wiki/index.php/Main_Page. The Field and 
Force objects have a full unit-testing framework, an extensive range 
of drag models have been developed and they provide interpolation 
and overlap libraries.

The sendtype Y specify which data is sent to the CFD solver, which 
can be any combination of inputs (note they are additive such as a) 
VEL b) NBIN c) STRESS d) FORCE e) FORCECOEFF f) VOIDRATIO as 
well as pre-defined collections.

Another major consideration of this project was an efficient method
for treating polydisperse systems, i.e. systems with a wide range of
particle sizes. After extensive reading, a strategy was developed to
use compound spheres or clumps based on multiple particles and a
volume  penalisation  method  Tsuji  (1993)  in  order  to  model
polydispersed systems. This is attractive from an HPC perspective as
it  allows us  to use of  the highly  optimised parallel  framework of
LAMMPS which  would  not  be  possible  using  single  large  spheres
which may be spread over multiple processes.

OpenFOAM, SediFOAM and the OpenFOAM_APP

A major part of this project involved establishing the correct form of
CFD solver to use.  The original proposal suggested the use of the
Navier Stokes equation in the form given by Tsuji (1993), although
many others exist (Xu & Yu 1997; Kafui et al. 2002). After careful
literature review, it was deemed that SediFOAM by Sun et al (2016)
at  https://github.com/xiaoh/sediFoam was  the  most  promising
candidate for coupled simulation. Some changes were made to the
solver,  adapting  SediFOAM  for  use  in  the  low  Reynolds  number
domains  of  interest  for  the  target  application  and  changing  the
algorithm to  receive  all  information  through  CPL  library  from the

https://github.com/xiaoh/sediFoam


separate LAMMPS code in line with the modular approach enabled
by  CPL  library.  SediFOAM  has  been  extensively  validated  and
includes a number of consideration which stabilise the multi-phase
solver  for  OpenFOAM,  based on the PhD thesis  of  Henrik  Rusche
(2002). The ideas is as follows. 

1) Exclude pressure gradient from the momentum prediction step,
calculate only a single Jacobi iteration to find a guess of the velocity
before  the  PISO  pressure  solver  is  applied  to  the  particle/fluid
mixture. 

2) The gravity and drag term is applied inside the pressure equation,
in a process known as semi-implicit coupling (Issa 1986). 

3) The combined fluid/particle pressure equation is used to enforce
mass conservation for the mixture and the flux is adjusted instead
of the velocity field. 

4) Finally the velocity field is obtained from a reconstruction of the
flux  correction.  This  approach  is  used  to  improve  the  numerical
stability of a granular simulation.  However,  it  was found that the
case of Couette flow, the correct solution is not obtained from this
method, and a full “Solve” is required in step 1) above instead of a
single “Relax” step to get correct results for Couette flow case. 

This highlights a common feature of CFD: balancing accuracy and
stability of a numerical scheme. It is therefore unclear if this is the
right  choice  of  solver  for  all  cases,  so  the  strategy  used  in  this
project was to provide software which allows a range of testing tools
in the form of mock coupled examples and a socket to allow easy
development  of  other  coupled  solvers  as  needed.  A  few  other
porous solvers developed during this project are also provided in the
OpenFOAM_APP source file and these can be tested for each case to
decide suitability.

Deployment

The CPL library software is kept very simple, entirely self contained
with no dependencies, requiring only a Fortran compiler for the core
code. The C++ wrapper needs to use a compiler which supports the
2011 standard and the Python wrapper is based on Python 2.7 using
Numpy and Pytest.

The main deployment challenge comes from compiling the codes
which are to be coupled, namely OpenFOAM and LAMMPS, external
software packages which we have limited control over but want to
allow the latest version from the repository to be used. We therefore
aim to keep both OpenFOAM and LAMMPS as close to the repository



version as possible, with every change representing a maintenance
burden. 

LAMMPS builds fairly quickly and the required additions for coupled
granular simulation have been made entirely self-contained using
the package system, so building the coupled version of LAMMPS is
fairly trivial. A major part of the early work in this project was to
make  a  single  USER-CPL  module  to  ensure  deployment  of  the
coupled model with LAMMPS as simple as possible. A patch is still
required on ARCHER as described below.

OpenFOAM  takes  over  8  hours  to  build,  this  prevents  test
automation using a continuous  integration platform and makes it
very time consuming to develop and provide building instructions.
The  solution  developed  for  ARCHER  is  to  allow  patching  of  an
existing OpenFOAM installation with minimal rebuild required. 

The reason a patch is essential in both OpenFOAM and LAMMPS on
ARCHER, is because we need to run the coupled codes in Multiple
Processor Multiple Data (MPMD) mode, with a command of the form,
mpiexec -n 64 ./md: -n 8 ./cfd 
where  they  share  a  single  MPI_COMM_WORLD.  Both  LAMMPS  and
OpenFOAM  assume  they  are  the  only  code  in  the
MPI_COMM_WORLD so this must be patched. Our previous solution
to this problem, using  MPI ports connected two unrelated MPI jobs
each with  an  MPI_COMM_WORLD.  However,  this  is  not  possible  on
ARCHER as Cray do not  support  processor spawning or  MPI_port.
This means that we are back to the MPMD strategy and maintaining
a separate patch for every version of both MD and CFD code.

An Anaconda based approach was also developed, which allows the
code to be downloaded into a virtual environment which contains all
dependencies,  including  MPI  (tested  on  the  local  Imperial
supercomputer  and a BP cluster).  This  did  not  work on the Cray
based ARCHER where a wrapper is required to run MPI jobs (aprun)
and node allocation was found to not work as expected. A solution
using the ABI interface module was put on hold as we waited for
GCC7.2 which has only recently become available, and is currently
being developed.

Singularity (HPC for Docker) was also developed for CPL library itself
and some minor scripts. As singularity and Docker are not currently
supported on ARCHER,  this  solutions will  be adapted when these
become available.



Testing and Validation

One of  the  main  aims of  this  project  was  to  implement  modern
software  practices  such  as  design  to  an  interface,  test  driven
development,  continuous  integration  and  version  control.  This  is
made  difficult  by  the  nature  of  MPI  programs  which  require
considerable setup before a run, including MPI initialisation and the
creation of an appropriate communicator which includes a number
of opaque side effects. The use of coupled simulation makes these
even  more  challenging  as  the  setup  of  two  separate  codes  is
required before we can even begin testing.  We have approached
this by testing CPL library in isolation; then separating off the entire
array,  field  and  force  system to  test  in  serial;  before  building  a
validated  range  of  drag  force  models  on  top  of  this  and  finally
developing a system of coupled mocks which use dummy Python
scripts to test the coupled codes feature by feature. In this section,
we give a number of examples of how we use the idea of mocks to
test the coupled LAMMPS and OpenFOAM, gradually building up a
framework which we can have faith in for use in coupled granular
simulation.
 
The starting point is to ensure the validity of CPL library, achieved
with  basic  tests  of  CPL_send and CPL_recv  operations  on a  wide
range of processor topologies for codes in Fortran, C++ and Python,
all automated using the Travis CI integration from Github.

A major part of the project was to split off the entire granular drag
force  implementation  into  a  field  and force  objects,  which  allows
complex coupling based serial operations to be developed using test
driven  development,  resulting  in  a  comprehensive  unit  testing
framework. This includes both a calculation of sphere-cube overlap,
interpolation  within  cells  (which  requires  communication  to
exchange  halo  cells)  and  a  wide  range  of  other  functionality  all
tested using googletest, an example of some of the unit-tests from
the googletest output are shown below:
[----------] 27 tests from CPL_Force_Test
[ RUN      ] CPL_Force_Test.test_CPL_array_size
[ RUN      ] CPL_Force_Test.test_CPL_field_name
[ RUN      ] CPL_Force_Test.test_CPL_field_setters
[ RUN      ] CPL_Force_Test.test_CPL_field_overlap
[ RUN      ] CPL_Force_Test.test_CPL_field_getters
[ RUN      ] CPL_Force_Test.test_CPL_force_constructor
[ RUN      ] CPL_Force_Test.test_CPL_force_get_set_field
[ RUN      ] CPL_Force_Test.test_CPL_get_cell
…
[ RUN      ] CPL_Force_Test.test_CPL_Force_get_force
[ RUN      ] CPL_Force_Test.test_CPL_force_internalfields
[ RUN      ] CPL_Force_Test.test_CPLForce_Drag

https://github.com/google/googletest


[ RUN      ] CPL_Force_Test.test_CPLForce_Drag_argmap
[ RUN      ] CPL_Force_Test.test_CPLForce_Drag_check_volSumsFsum
[ RUN      ] CPL_Force_Test.test_CPLForce_Drag_check_overlap_field
[ RUN      ] CPL_Force_Test.test_Granular_CPL_inhereted
[ RUN      ] CPL_Force_Test.test_Granular_CPL_forces
[  PASSED  ] 27 tests.

Memory allocation and leak checking is performed as part of the
test suite using Valgrind to check all new development both locally
and on Travis CI.

The range of  possible  drag models  in  coupled DEM is  extensive,
including Ergun, Di Felice, Tang, Tenneti and BVK (Ergun 1952; Di
Felice 1994; Tang et al. 2014; Tenneti et al.  2011; Beetstra et al.
2007). These have all been implemented using the CPL_force object
framework  and  are  automatically  tested  by  comparison  to  an
existing implementation (https://github.com/chrisk314/drag-utils).

Validation of LAMMPS with coupling is done through a range of test
cases. The test cases suggested in the original proposal were found
to be too complex and instead a range of simpler cases were used,
each  designed  to  test  one  additional  aspect  of  the  coupled

Figure 4: Bouncing LAMMPS particle with force field from coupled 
exchange compared to analytical solution and regression test

https://github.com/chrisk314/drag-utils


simulation. Starting from a single particle in a periodic box, we apply
a  field  obtained  through  the  coupler,  then  add  the  same  single
particle bouncing on a wall, then the particle interacting with a fluid
field through drag and buoyancy, then flow over an FCC lattice. Each
case  has  analytical  or  other  solutions  we  can  compare  to,  for
example the bouncing ball, shown in Figure 4, can be tested against
constant acceleration equations for most of the trajectory, while the
(non-linear) interaction with the wall is tested with a regression test
to a previous simulation. 

The  coupling  to  a  dummy  code  can  then  test  spatially  and
temporally varying force fields; probe different processor topologies
and  the  communication  exchange  within  LAMMPS;  ensure  the
correct application of the drag force and the correct application of
dynamics within LAMMPS. In this way, the coupled dummy scripts
can  be  seen to  work  like  the  concept  of  a  mock  class,  allowing
values to be injected and exploring how the code responds, thereby
separating the problem into its various parts.

Figure 5: SediFOAM simulation (circles) compared to the Couette 
flow analytical solution (lines) with L2 norm assertion test.



The  OpenFOAM simulations  are  based  on  SediFOAM (Sun  et  al  ,
2016), a complex multi-phase solver based on years of research in
two fluid modelling  and additions  for  turbulent  granular  flows. To
ensure this is valid for our problem, we start with a simple boundary
enforced hydrostatic  gradient  which  is  the basis  for  much of  the
work in  sediment  flows and is  used here to ensure the pressure
solver is working as expected. Another canonical test case with an
analytical solution is Couette flow, Figure 5, which tests the diffusive
part of the fluid simulation is working as expected. We start with the
case with zero porosity, which is coupled to a mock Python script
and matched to the analytical solution with an assertion based on
the L2 norm error. Next, to test the effect of porosity and drag force
on the fluid solver, a region of constraint force and zero porosity is
applied by a mock Python code, as shown in Figure 6. The part of
the  domain  above  this  can  again  be  matched  to  the  Couette
analytical solution, validating that the drag force works as expected.

Figure 6: Couette flow with drag force and porosity applied in a local 
region with evolution checked against analytical solution by python 
dummy script.



The next model looks at applying a porosity that is representative of
a DEM simulation, with the MOCK code reproducing a controlled FCC
lattice. As a DEM simulation would be averaged for this case and
pass a uniform field, the mock field is identical and we can therefore
developed  the  CFD  code  in  isolation  and  ensure  this  works  as
expected.  

import numpy as np
from mpi4py import MPI
from cplpy import CPL

#initialise MPI
comm = MPI.COMM_WORLD
CPL = CPL()
MD_COMM = CPL.init(CPL.MD_REALM)
CPL.setup_md(MD_COMM.Create_cart([1, 1, 1]),
                       xyzL=[1., 1., 1.], xyz_orig=[0., 0., 0.])

#Setup send and recv buffers
recvbuf, sendbuf = CPL.get_arrays(recv_size=9, send_size=8)

#FCC properties
dp = 0.01; phi = 0.74; mu = 1e-3; K = 435.
cvol =CPL.get("dx")*CPL.get("dy")*CPL.get("dz")
cnp = cvol*phi/((np.pi/6)*dp**3); cCd = cnp*3*np.pi*mu*dp*K

#Main time loop
for time in range(501):
    # Recv data [Ux,Uy,Uz,dPx,dPy, dPz, dTaux, dTauy, dTauz]
    recvbuf, ierr = CPL.recv(recvbuf)
    Uy = recvbuf[1,:,:,:]
    gradPy = recvbuf[4,:,:,:] 

    # Send data [Ux, Uy, Uz, Fx, Fy, Fz, Cd, e] 
    sendbuf[4,:,:,:] = -cCd*Uy + (cvol*phi)*gradPy
    sendbuf[6,:,:,:] = cCd*np.ones_like(Uy)
    sendbuf[7,:,:,:] = 1 - phi
    CPL.send(sendbuf)

CPL.finalize()
MPI.Finalize()

Figure 7: Snippet of Python mock code to be linked to OpenFOAM to 
mock LAMMPS FCC lattice

Once the CFD code has been tested in isolation, we setup an FCC
lattice in LAMMPS and apply the corresponding information from a
dummy script modelling the CFD code, in order to debug the DEM



code separately.  The two validated codes can then be connected
directly and any problems resulting from this final “integration test”
therefore  isolate  the  problem  and  tweaks  to  the  input  system
applied to fix this.  

In  this  way,  the  CPL  framework  provides  an  elegant  way  of
developing software with integrated testing and allows two complex
codes to be developed separately. This also allows the automation of
the test of each code against the various releases, so any errors
introduced by future changes to OpenFOAM, LAMMPS, CPL library
(as well as upstream dependencies such as MPI) can be isolated to
one or other code.  

Scaling

Choosing a meaningful metric for scaling of a coupled simulation is
not a trivial problem. As we are linking two existing codes, scaling is
limited to the worst of these codes. The DEM/MD code is often the
rate limiting step and in the previous dCSE reports (Smith et al 2012
and Smith et al 2013) we simply showed that scaling of a coupled
MD code was comparable to an uncoupled case. However, a good
load balancing strategy should prevent the DEM being a bottleneck;
so we consider first the relative cost of both codes to establish the
ratio  of  system  sizes  to  get  good  performance.  We  have  then
developed  a  custom framework  to  model  the  scaling  of  the  CPL
library software developed during this project.

Serial Optimisation

Before considering a parallel run on ARCHER, it is essential that the
serial efficiency of any newly developed code is optimised. This is
achieved  by  profiling  on  a  local  compute  using  Valgrind's
cachegrind, with the output shown here:



It is clear from Figure 8 that get_force and pre_force, both new 
routines developed in this project, dominate the calculation. Given 
the extensive calculation required for the intersection of a 
sphere/cube, it is not surprising that this operation is expensive (see
self time of overlap<hexahderon> in Figure 8). The overlap 
calculation itself is developed for the most general possible case 
and uses the library developed by 
(http://dx.doi.org/10.1016/j.jcp.2016.02.003), a header only C++ 
library. A range of unit tests were written to ensure the outputs of 
this library gave the expected results before incorporation into the 
CPL_field class described above. 

Based on the profiling, a range of optimisations were undertaken. In
order to accelerate the simulation, only spheres which are within a
radius of the cell's edge are considered for overlap calculation, with
the whole spherical volume simply added to the cell if not. Spheres
which are only near one surface are calculated using the spherical
cap calculation. Only the very rare cases of spheres located near the
edge or corner of a cell are then passed to the fully general overlap
library calculation. These changes resulted in a speedup of orders of
magnitude. The accelerated approach detailed here is then checked
against the overlap library for millions of random particle positions

Figure 8: Output from cachegrind coupled LAMMPS case

http://dx.doi.org/10.1016/j.jcp.2016.02.003


to ensure this accelerated code gives the same results as the full
overlap  calculation.  In  addition,  memory  allocations  were  greatly
reduced through the use of pointers to allow a further speed up in
the various code developments.

Serial Scaling

We measured ratio of OpenFOAM and LAMMPS codes as a function
of  number  of  cells  or  particles  respectively  in  a  representative
simulation (hydrostatic for OpenFOAM, FCC lattice for LAMMPS). The
serial scaling suggests that designing systems with approximately
two hundred particles per cell will give good load balancing. 

Figure 9: Ratio of calculation time of SediFOAM to LAMMPS as a function of 
number of cells or particles

Parallel Scaling

The basic  premise of  CPL library is  to set up only  local  mapping
between processes which overlap physically, using a mapping set
up by MPI_graph.  Each CFD processor  receives  data from one or
more  DEM  processor,  with  MPI_Wait  used  to  hold  until  all
overlapping information has arrived before unpacking and returning
the  data  to  the  user.  As  all  communication  is  local,  there  is  no
expected bottleneck to good scaling.



Figure 10: Weak scaling of CPL library with both codes using the 
same number of processors

However,  we  want  to  ensure  that  the  mapping  scales  well  in
coupling  of  any  two  coupled  codes  for  any  situation.  A  parallel
scaling  tests  is  developed  which  uses  a  minimal  Fortran  script
compiled into two executables flagged as CFD and DEM and this is
run with both connected as part of a coupled simulation. In each
case,  all  coupled  communication  is  local  to  the  overlapping
processors, each of which always has 603 cells (weak scaling). The
arbitrary calculation sends three values for each of the 603 cell on
each processor, receives the same volume of data and then checks
it  is  correct,  before  performing  an  arbitrary  calculation.  This  is
repeated  twenty  times  for  each  run.  The  smallest  size  uses  24
processes  in  both  the  CFD and  DEM codes.  The  system is  then
scaled up to 5016 processes per code (10,032 cores in total) and the
time taken is calculated. As the actual calculation is identical each
time on a given processor, the coupled communication is the only
change and we obtain a good insight to the scaling of the system,
shown in Figure 10. We use the Craypat tool on ARCHER to check
overhead and costs due to parallel communication, shown in Table
1. It is seen that the majority of the time is spent waiting for the
messages to arrive. All broadcast and barrier communications are in
the setup so can be ignored. Packaging and unpacking the data is
seen  to  take  about  5%  of  the  time  in  CPL  send  and  CPL_recv
respectivly.  This  suggests  that  coupled  scaling  is  working  as
expected and, given the large amounts of data sent, the scaling of
70% at 10,000 cores seems reasonable. As  the data is used directly
after  CPL_recv,  non-blocking  communication  are  not  possible



without  reorganising  of  the  coupling  algorithm,  a  possible  future
consideration.

Table 1: Cray pat profile of parallel code

Conclusions

In this work, OpenFOAM was coupled to LAMMPS using CPL library
with the code deployed on ARCHER. The development included an
extension to allow data exchange with fully overlapping domains;
design  of  a  modular,  extensible  and  unit-tested  drag  force
framework  for  granular  systems;  scaling  studies  of  both  the  CPL
library  and  LAMMPS-OpenFOAM;  documentation  and  interface
design for use by both novice users and programmers; deployment
on ARCHER using a single script and Anaconda packages; as well as
the development of a modular framework which facilitates testing of
components and mocking of coupled runs. 



The developed software contains many tests and the aim was to
develop validated building blocks which could be used to construct
coupled simulation projects. As an instability in either code is very
difficult to predict and almost impossible to debug in a monolithic
coupled  executable,  we  focused  on  splitting  the  software  and
designing tools  to probe the coupled problem. By making testing
and  coupled  mock  scripts  an  integral  part  of  the  development
process,  we hope to  develop more reliable  coupled software  and
provide easier deployment on HPC platforms.
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