
eCSE08-10: Optimal parallelisation in CASTEP

Arjen, Tamerus
University of Cambridge

at748@cam.ac.uk

Phil, Hasnip
University of York

phil.hasnip@york.ac.uk

July 31, 2017

Abstract

We describe an improved implementation of OpenMP multithreading
in CASTEP, with hybrid MPI/OpenMP execution approaching pure-MPI
performance levels at a reduced memory footprint. Additionally, a toolkit
was implemented to guide users to improve their utilisation of parallel
machines running CASTEP.

This work was funded under the embedded CSE programme of the ARCHER
UK National Supercomputing Service (http://www.archer.ac.uk)

1 Introduction & Project description

CASTEP [1] is a high-performance implementation of density functional theory
for first-principles materials modelling. CASTEP describes the electronic states
(“bands”) of the material using a plane-wave (Fourier) basis, using parallel fast
Fourier transforms (FFTs) to convert between Fourier space (“reciprocal space”)
and the direct space (“real space”).

CASTEP was written to be MPI-parallel from the outset, but in recent
years this distributed-memory parallelism has been supplemented with shared-
memory multithreading via OpenMP. Combining these two parallel modes en-
ables CASTEP to scale well up to 10,000 cores and beyond (see Fig. 1).

In this report we describe work to improve the existing implementation of
multithreading in CASTEP using OpenMP, with the aim of enabling even higher
levels of parallelism through hybrid MPI/OpenMP. We achieve this through
optimising both internal CASTEP routines, and the use of threaded libraries.

We also report our efforts in developing a guided tool to running CASTEP
with an optimal parallelisation strategy.

1

Figure 1: Parallel scaling performance for a simulation of poly-A DNA in vac-
uum, run on ARCHER. The parallel speed-up is reported as compared to the
performance on 6144 cores, which are the fewest cores the simulation will run
on using only MPI.

2

2 Methodology

2.1 Testing environment

Main development and testing was performed on the Darwin and Wilkes clusters
hosted at the University of Cambridge. Darwin nodes run dual 8-core Intel
Xeon (Model, Sandy Bridge) CPUs; Wilkes is equipped with two six-core Xeon
(Model, Ivy Bridge) CPUs per node. Final results were obtained on ARCHER.

Performance testing and optimisation during development was performed
with both GNU and Intel compilers and various BLAS, LAPACK and FFT li-
braries. The compilers used were gfortran 5.3 and Intel fce 16.3.210. MPI func-
tionality was provided by Intel MPI 5.1.3.181 or MVAPICH2 2.1. BLAS/LA-
PACK and FFT routines were provided by OpenBLAS 0.2.19 and FFTW, 3.3.5,
respectively, or by Intel MKL 11.3.3.210.

Two tools were used to profile CASTEP: the internal, built-in profiling tool
”trace”, and score-p1.

2.2 Profiling methodology

The main tool used to profile the (OpenMP) performance for CASTEP was its
built-in profiling tool. Although its functionality is limited to only reporting
the wall clock time spent in subroutines or libraries, the reported timings are
reliable for all but the shortest calculations and the impact on performance is
minimal (typically 2s).

The timings reported by the internal profiler were used to quickly identify
OpenMP performance issues, either due to a lack of thread-parallelism in the
code, or due to load imbalance. The simple timings quickly tell us whether and
how well routines scale with OpenMP threads.

In order to comprehensively test CASTEP’s scaling performance, a number
of benchmarks were chosen that represent a range of realistic workloads, in
particular covering ground state calculations with general k-point sampling and
those using ‘gamma-point-only’ sampling; when only the gamma-point is used,
a large amount of complex-complex arithmetic reduces to real-real, leading to
an 8-fold reduction in computational time for large simulations. In base testing,
each input case was run on 2 nodes of the test system, using either n MPI
processes, 2 OpenMP threads per process with n/2 MPI processes, or 4 OpenMP
threads and n/4 processes.

By running in this way, we could quickly identify areas of the code that did
not scale satisfactorily by examining the increase in wall clock time per routine
when increasing the level of threading.

Since CASTEP’s internal profiler does not support reporting more than per-
process wall time, score-p was used to get more detailed information, most
importantly potential load imbalance between OpenMP threads.

1http://score-p.org

3

http://score-p.org

3 Optimisations

3.1 Internal routines

Optimisation of the internal CASTEP routines was a mostly mechanical pro-
cess. By analysing the profiles generated by score-p and the internal profiler,
we identified routines that showed a slowdown when running with OpenMP.
Tagging routines would be placed around suspect loops and function calls that
allowed CASTEP’s profiler to identify these new, smaller regions.

These tags were used to identify the loops that were the source of the slow-
down. OpenMP directives were then placed in the appropriate places, using
parallel regions, reductions and loop collapsing where appropriate.

3.2 Libraries

A significant amount of CASTEP’s CPU time is spent in library routines, specif-
ically BLAS and FFT routines. Here we will describe how these libraries have
been optimised to make use of OpenMP multithreading.

3.2.1 BLAS

CASTEP 16.1 has limited support for multithreading support in libraries; specif-
ically, there is a manually threaded interface to a subset of the most important
BLAS routines (e.g. ZGEMM/DGEMM and ZDOTC/DDOT). Our bench-
marks showed that this interface resulted in a more consistent OpenMP perfor-
mance than relying on the libraries’ own OpenMP interfaces, especially in the
case of OpenBLAS. The overall better performance of the manual interface led
to the decision to keep and expand upon this interface for algebraic routines.

The predominant BLAS routines in terms of time consumption are variations
of GEMM and TRMM. A parallel GEMM interface was developed in an earlier
eCSE project (eCSE01-17), and only minor optimisations were performed in this
work; its scaling is now similar to that using pure MPI parallelism. An interface
for TRMM was not implemented in the earlier eCSE work, but has been created
over the course of this project and scales similarly well.

Further optimisations include analysing the code for occurrences of direct
calls to BLAS calls that have a parallel interface available, and using the in-
terface instead. Furthermore some calls were identified where memory access
patterns were non-optimal; these have been modified to run more efficiently.

3.2.2 FFT

In CASTEP 16.1, support for threaded FFTs was not yet implemented. In
this eCSE project, OpenMP support was enabled for FFTW3 and MKL, and
manually implemented for the GPFA[2] FFT algorithm, which is bundled with
CASTEP.

Enabling OpenMP support in FFTW is relatively straightforward, but should
only be enabled when desired. To ensure this, we make sure that OpenMP is

4

initialised to multiple threads when calling the FFTW initialisation routines.
We use a guard clause to ensure the OpenMP initialisation routines are only
called when OMP MAX THREADS is greater than 1, as shown in Listing 1.

Listing 1: Enabling OpenMP support in FFTW3

i f (o p e n m p i n i t i a l i s e d == 0) then
o p e n m p i n i t i a l i s e d = omp get max threads ()
i f (o p e n m p i n i t i a l i s e d . gt . 1) then

ca l l d f f t w i n i t t h r e a d s (stat)
ca l l d f f tw p lan w i th n th r ead s (ope nm p in i t i a l i s e d , stat)

else
o p e n m p i n i t i a l i s e d = 1

endif
endif

A similar construct was used for MKL. Using the OpenMP domains pro-
vided by MKL allows the library to set the number of OpenMP threads only
for part of its functionality, in this case the FFT routines. By setting the
overall number of threads to 1 (as required for the BLAS routines) and call-
ing mkl domain set num threads(nthreads, MKL DOMAIN FFT) to
enable OpenMP only for the FFT functions. This solution however was dis-
carded in favour of the less elegant but more effective use of MKL’s dynamic
parallelism, as described in 3.3.

The GPFA library required a manual OpenMP implementation. Since this
is not a strongly performing library by nature, a course-grained multithread-
ing model was deemed sufficient. Parallelisation of 3-dimensional FFTs was
achieved by enclosing independent calls to the subroutines fft serial gpfa
and fft serial setgpfa in parallel OpenMP directives, within the main rou-
tine fft serial gpf3d (names were left unchanged for compatibility reasons).
Additionally, an independent loop in the gpfa routine was parallelised similarly.

3.3 Dynamic parallelism

Intel’s MKL has support for dynamic OpenMP multithreading using the envi-
ronment variable MKL DYNAMIC. Enabling this feature makes MKL scale
the amount of OpenMP threads up or down, based on the number of active
threads at the time a routine is called. Using this feature allows the use of
CASTEP’s manual threading interface to BLAS, whilst also utilising the inter-
nal multithreaded implementation for those routines that have not (yet) been
implemented manually. Furthermore this is now the preferred method for en-
abling threaded FFTs (as mentioned in3.2.2).

3.4 Runtime optimisation

To ensure optimal performance, some runtime optimisation is required. Specif-
ically, proper core and thread mapping and binding is paramount to guaran-

5

tee optimal OpenMP performance. Especially on multi-socket nodes, OpenMP
threads belonging to an MPI process should be located on the same physical
CPU (where possible). Figure2 shows the optimal mapping for a 4MPI/4OMP
setup on a Darwin node. We scatter the MPI processes over the 2 physical CPUs,
and bind the OpenMP threads to the cores nearest to the processes.

Figure 2: Good CPU binding on Darwin

Using this mapping, the performance of GEMM routines is close or identical
to purely MPI-parallelised runs. Without this explicit mapping we observed
outliers performing up to 30 percent slower.

4 Performance analysis

The performance of the new OpenMP code is shown in Figure 3, for a representa-
tive benchmark (CASTEP’s standard al3x3 benchmark). All of the calculations
here were hybrid OpenMP-MPI runs, with 192 MPI processes, but different
numbers of OpenMP threads per MPI process, ranging from 1 (pure MPI) to 24
(the number of physical cores/node on ARCHER). The single-threaded perfor-
mance is identical in both cases, as expected, but the performance is improved
for all OpenMP threads, with the improvement being greater for the larger
thread counts. For CASTEP 16.1.1 the shortest run-time was achieved using 6
threads/process (for a total of 192×6 = 1152 cores); the OpenMP improvements
in this project led to a speed-up of nearly 10% for this calculation, but the im-
proved scaling of the new code means the quickest calculation was actually for

6

Figure 3: Parallel OpenMP scaling for a simulation of a 3x3 sapphire surface
(CASTEP’s al3x3 benchmark), run on 192 MPI processes on ARCHER with
a range of OpenMP threads per MPI process. The time taken for 1 thread-
/process is unchanged, but the time for multiple threads/process is improved
significantly across the entire range. The shortest run-time is now achieved with
12 threads/process, twice the previous optimal count.

12 threads/process (for a total of 192×6 = 2304 cores). This 12 thread/process
calculation was over 25% faster than the same run using CASTEP 16.1.1.

There are two main issues hindering full performance parity between pure
MPI and hybrid MPI/OpenMP. The first is a call to MPI Allgatherv in
the 3D FFT routines; this operation shows a slowdown when the number of
processes decreases. The second is the use of indirection in accessing a multi-
dimensional array in the FFT calling subroutines basis recip reduced to real

and basis real to recip reduced. We suspect that we are suffering from
cache thrashing here, but unfortunately, we did not have time to perform in-
depth analysis of these issues.

7

5 Parallel tuning

Apart from balancing the MPI to OpenMP ratio, CASTEP has a number of pa-
rameters that affect its parallel performance, depending on the input case. These
parameters require manual set-up through CASTEP’s simulation input files, and
fine-tuning requires in-depth knowledge of CASTEP’s parallelism model and the
computer hardware. As a result many users may run with non-optimal settings.
As a part of this eCSE project, we aimed to develop a toolset that would,
through a short ‘microbenchmark’, automatically find the optimal parameters
for a given input case.

5.1 The microbenchmark

Two of the major operations influencing the performance of a CASTEP simu-
lation are wave rotation and wave real to recip/wave recip to real, con-
taining calls to BLAS (ZGEMM or DGEMM, depending on the simulation pa-
rameters) and 3D FFTs, respectively. Since the sizes of the data structures
these operations are performed on differ per input case, this has to be taken
into account to get a reliable benchmark.

To get the correct sizes, we integrated the benchmark in the initialisation
phase of CASTEP. We can use existing routines to extract the required sizes
for the ZGEMM/DGEMM and FFT arrays, and use dummy data to perform a
number of calls to the routines. We use MPI Walltime to calculate the time
spent both in the wave rotate and FFT routines. This provides us with an
indication of overall performance, and can be used to determine whether we
should use band or G-vector parallelism.

5.2 Parallel FFTs and shared memory

The parallel 3D FFT requires two MPI AlltoAllV calls across the G-vector group
for each band, at each k-point. As the number of MPI processes N increases,
the total number of MPI messages increases as N2, and the size of each message
decreases as 1

N2 , meaning that the operation becomes latency-dominated. Since
each process sends N messages (of the total N2), the time for the AlltoAllV
increases as N ; this is exacerbated on modern HPC systems by the large num-
ber of cores on each node (24 on ARCHER) and the limited number of NICs
available to each node (typically only 1 or 2), leading to severe device-contention
and an increase in the effective message latency.

Both the small message size and the contention for NICs can be ameliorated
if cores on the same node aggregate their messages, and only a small number of
cores on each node perform the MPI AlltoAllV. Aggregating the messages in-
creases the message size, making more effective use of the available interconnect
bandwidth, reduces the number of messages and, with fewer processes involved
in the inter-node communications, the contention for the NICs is also reduced.
The optimal number of processes which should be involved in the inter-node
communications depends on the number of available NICs, the latency and

8

Figure 4: A comparison of the parallel run-times with and without the parallel
performance model, for a simulation of a 3x3 sapphire surface (CASTEP’s al3x3
benchmark), run on ARCHER using 192-768 cores (6 threads per MPI process).
For the fixed SMP group size, the usual recommendation of 6 was used; this
is confirmed to be a good choice by the parallel model, but 12 is sometimes
slightly better, leading to an improvement in run-times when using the parallel
model.

band-width of the interconnect, and the time it takes for message aggregation
and (following the inter-node communication) dissemination.

The message aggregation and dissemination could be done entirely within
MPI, using an intra-node communicator, but since the cores all have access to
the same physical RAM it is more efficient to use an explicit shared-memory
interface. CASTEP has the ability to use POSIX or System V shared mem-
ory to provide direct memory access between MPI processes, reducing the MPI
communication. Like other performance ’fine-tuning factors’, enabling this func-
tionality and setting the amount of processes per shared memory region was left
to the user. In the modified code, the user may optionally set a maximum num-
ber of processes per group; the code will benchmark sensible values for the
shared-memory pool size and select the optimal setting. This capability has
been merged recently into the current CASTEP codebase, and will be available
to all users in next year’s release (expected to be CASTEP 18.2).

9

5.3 Parallelisation strategy

Four different kinds of parallel decomposition are used in CASTEP: farm, k-
point, G-vector and band parallelism. Farm and k-point parallelism are in-
dependent forms of parallelism, with very little inter-process communications
(occasional reductions and synchronisation points). G-vector and band paral-
lelism however do require significant communication between processes, and so
increasing the number of processes comes at the cost of increased communica-
tions.

While generally G-vector parallelism is preferred over band parallelism, in
certain cases the reverse may yield better performance. An initial method to
choose the optimum decomposition was implemented by taking the number of
MPI processes available after assigning them to farms and/or k-points. We
benchmark distributions over different numbers of bands or G-vectors, at vary-
ing idle fractions (number of CPU cores left idle); the fastest performance on
the microbenchmark is likely the most efficient strategy.

Currently, CASTEP uses heuristics to decide an optimal strategy with a
maximum idle fraction decided by the user (default: up to 30% of MPI pro-
cesses). By taking this decision out of the users’ hands and deciding through
benchmarking, we rule out a situation where the maximum idle is set too low,
forcing CASTEP to choose a less than optimal strategy.

Unfortunately, we ran into stability issues while changing the parallelisa-
tion strategy at runtime. Within the time available during this eCSE project
we lacked the resources to successfully work around these issues, leading to
this aspect of the decomposition functionality not currently being included in
CASTEP.

6 Conclusions

The OpenMP multithreading implementation in CASTEP was optimised, re-
sulting in an improved performance approaching that of the native MPI imple-
mentation, and in specific cases even exceeding it. Improvements were made
both to the threading of internal routines as well as improving the use of par-
allel BLAS and FFT libraries. Apart from just increasing Hybrid OpenMP
performance, by improving the level of threading we also achieve a decrease in
memory usage, allowing the computation of larger models on a given machine.

Additionally, a lightweight benchmark was written and integrated with CASTEP,
which allows CASTEP to determine an improved parallel decomposition and the
size of any POSIX/System V shared memory groups. This framework was de-
signed to be extensible, so that functionality may be added straightforwardly in
future projects.

These two classes of performance improvements are independent of each
other, and may be combined to provide substantial performance gains over
previous CASTEP calculations. These performance gains are achieved whilst
simultaneously reducing the need for users to perform detailed benchmarking

10

themselves, and similarly reducing the technical knowledge users need in order
to use CASTEP efficiently on multicore HPC nodes.

11

References

[1] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Ref-
son, and M. C. Payne. First principles methods using castep. Z. Kristall.,
220(5-6):567–570, 2005.

[2] Clive Temperton. A generalized prime factor fft algorithm for any
n=2ˆp3ˆq5ˆr. SIAM Journal on Scientific and Statistical Computing,
13(3):676–686, 1992.

12

	Introduction & Project description
	Methodology
	Testing environment
	Profiling methodology

	Optimisations
	Internal routines
	Libraries
	BLAS
	FFT

	Dynamic parallelism
	Runtime optimisation

	Performance analysis
	Parallel tuning
	The microbenchmark
	Parallel FFTs and shared memory
	Parallelisation strategy

	Conclusions

