
15

Task-Farming Parallelisation of Py-ChemShell for
Nanomaterials: an ARCHER eCSE Project

Abstract

We have implemented a two-level task-farming parallelisation framework
in the new Python-based version of the ChemShell multiscale
computational chemistry environment. Compared to the non–task-farmed
code, we have achieved speedup factors of up to 5.7 times by carrying out a
range of benchmark calculations at various QM/MM theory levels. We have
also parallelised the code used for setting up solid state embedded cluster
models. As part of this work we have enabled new science through a range
of new functionality, including an interface to the highly scalable
DL_POLY 4 classical molecular mechanics package, support for the Global
Arrays (GA) library required by the NWChem quantum code, and a
numerical gradients module. Through the developments in this project we
now are able to model nanoparticles of over 1.6×105 atoms at the QM/MM
level on the ARCHER supercomputer.

You Lu1, Matthew R. Farrow2, Alexey A. Sokol2,
C. Richard A. Catlow2, Paul Sherwood1 and Thomas W. Keal1

1 Scientific Computing Department, STFC Daresbury Laboratory, Daresbury,
Warrington WA4 4AD

2 Department of Chemistry, University College London, London WC1E 6BT

31 January 2018

16

Table of Contents

1. Introduction... 17

2. Methodology ... 19

2.1 Task-farming parallelisation ... 19

2.2 Parallelisation of cluster set-up routines ... 23

2.3 Task-farm parallelisation of cluster set-up and QM/MM calculation routines for
multiple QM regions ... 23

2.4 Task-farming with Global Arrays using Py-ChemShell/NWChem 24

2.5 Integration of DL_POLY 4 into ChemShell for high performance QM/MM
calculations on nanoparticles .. 24

2.6 Compilation on ARCHER .. 25

3. Results and Discussion ... 27

3.1 GAMESS-UK/GULP task-farmed finite-difference gradients calculation 27

3.2 NWChem/GULP task-farmed finite-difference gradients calculation 31

3.3 NWChem/DL_POLY 4 task-farmed finite-difference gradients calculation 34

3.4 NWChem/DL_POLY 4 modelling of ZrO2 nanoparticle ... 37

4. Conclusion and Outlook ... 39

Acknowledgements ... 41

References ... 42

17

1. Introduction

ChemShell (http://www.chemshell.org) is a computational chemistry environment for
multiscale modelling. While it supports standard quantum chemical or force field
calculations, its main strength lies in hybrid quantum mechanical/molecular
mechanical (QM/MM) calculations. The concept of ChemShell is to leave the time-
consuming energy evaluation to external specialised codes, while ChemShell takes
over higher-level tasks, communication and data handling. The QM/MM approach,
acknowledged in the awarding of the 2013 Nobel Prize to its original inventors, is
particularly useful in the study of heterogeneous catalysis. ChemShell supports
embedded cluster calculations [1 , 2] in which the bulk material or surface is
represented by a finite MM cluster model, optionally with additional surrounding
point charges to mimic the effect of bulk electrostatics. The active site is modelled by
a high-level QM calculation with electrostatic embedding, where the cluster
environment is represented by point charges in the QM Hamiltonian. This setup is
intended to give an optimal balance between accuracy at the active site and
computational expense.

Py-ChemShell is a Python-based redevelopment of the original Tcl-based ChemShell
code, which is a well-established module on ARCHER. The switch to Python has
been planned since 2012, motivated by the wide appeal of Python in the scientific
community and the power of the language and its libraries. Unlike the closed-source
Tcl-ChemShell package, Py-ChemShell is free and open-source software released
under the GNU Lesser General Public License version 3 (LGPLv3). Py-ChemShell
development work began in 2014 and the first alpha release was made in December
2017, incorporating the work carried out in this eCSE. A first full release is planned in
Spring 2018, after which Py-ChemShell will be deployed as a module on ARCHER
for general use.

The current project Task-Farming Parallelisation of Python-ChemShell for
Nanomaterials (eCSE08-14) was funded under the embedded CSE programme of the
ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). It aims at
introducing a task-farming parallel framework, similar to that of Tcl-ChemShell
which we implemented in a previous dCSE project, to the Py-ChemShell codebase for
parallelising tasks that are commonly used in nanomaterial simulations. The eCSE
proposal was written by Thomas Keal, Paul Sherwood (STFC Daresbury Laboratory),
Alexey Sokol, and Richard Catlow (University College London). The project work
was carried out by You Lu (STFC Daresbury Laboratory) and Matthew Farrow
(University College London). 14 months of development effort was deployed over 12
chronological months from August 2016 to July 2017. The code development
objectives for the project were:

A. Implementation of a task-farming parallel framework in the Python-based
version of ChemShell using workgroups defined by MPI communicators.

http://www.chemshell.org/
http://www.archer.ac.uk/

18

Sharing of the MPI workgroup environment with external codes such as
GAMESS-UK and GULP to perform multiple energy and gradient calculations
simultaneously, to allow task-farming of common chemical tasks such as finite-
difference gradients and nudged elastic band (NEB) optimisation in DL_FIND.
Demonstration of a speedup factor of over 4 for finite-difference gradient
evaluation in typical QM/MM calculations.

B. Parallelisation of the ChemShell routines that set up QM/MM model clusters
from a periodic input structure, including parallel computation of electrostatic
potential, field and field gradients on centres using Ewald summation and fitting
of point charges around the cluster using this data to reproduce the missing
periodic electrostatic interactions. Support for task-farming the cluster set up
process to enable QM/MM calculations with multiple QM regions.
Demonstration of parallel scaling on a target system containing 100,000 atoms,
with a speedup factor of over 2 compared to the sequential calculation.

C. Support for task-farming with codes that use the Global Arrays (GA) library
such as NWChem, implemented by creating GA processor groups corresponding
to the MPI workgroups and passing these to NWChem as a directly-linked
library. Demonstration of a comparable speedup factor (>4) to GAMESS-UK for
finite-difference gradient evaluation using NWChem.

D. Creation of an interface to DL_POLY 4 in ChemShell including the facility to
directly link the code and share the MPI environment. Demonstration of
successful task-farming using ChemShell/NWChem/DL_POLY 4 with speedup
factor comparable to ChemShell/NWChem/GULP above.

E. Enabling of QM/MM catalysis studies of nanomaterials using
ChemShell/NWChem/DL_POLY 4. Demonstration of benchmark task-farming
calculations beyond the capabilities of the previous Tcl-based version of
ChemShell (systems of larger than 100,000 atoms in the MM environment), with
single and multiple QM regions.

We have fully completed objectives A, C, and D, and carried out a series of
benchmark calculations to assess the improvement in performance resulting from the
task-farming framework. The best resulting gain is 5.7-fold speedup which surpasses
our expectation in the project proposal. We have also parallelised the code to setup
QM/MM model cluster in objective B. For objective E, we have managed to carry out
calculations on nanomaterials of more than 160,000 atoms using the newly
implemented interface to DL_POLY 4, well above our target. We have also designed
a protocol to perform multi–QM-region calculations and finished associated code
development of charge fitting which is necessary for this type of calculation.

19

2. Methodology

2.1 Task-farming parallelisation

Task-farming parallelism is useful in situations where a set of independent
calculations have to be performed. [3,4] The task farm consists of all available
processors, which are then divided into subsets of processors called workgroups. The
tasks are split between the workgroups which work on them in parallel. As the
calculations are independent, no information needs to be exchanged between
workgroups during this time, and sharing of results can be postponed until all the
tasks have completed. In computational chemistry, it is common to carry out
calculations containing a number of single-point energy evaluations that are
independent from each other. Typical types of applications include the nudged elastic
band (NEB) method for energy minimisation, [5 , 6] finite-difference numerical
gradients and Hessians, and population-based optimisation (e.g. genetic algorithms).

Figure 1 illustrates how the MPI parallel environment of Py-ChemShell was extended
by the work of the current eCSE project. In the original framework shown in panel
(a), all processes are grouped into a single MPI communicator (MPI_COMM_WORLD),
which can be used for parallel execution of external codes. The Python interpreter,
which parses the user input file, runs on a single master node. In the task-farming
framework shown in panel (b), the processes are evenly grouped into Workgroup 0
to nworkgroups−1, each containing a Master process and Replica process(es). Each
Master instantiates a Python interpreter, which parses the user input script and
invokes the external programs to execute the actual computational chemistry tasks.
We will discuss more details of Py-ChemShell’s mechanisms in the following part of
this chapter. There is no lower limit for the size of workgroup (i.e., nprocesses per
workgroup), so that there is no Replica process if the workgroups contain only one
process each. The new task-farming framework allows Py-ChemShell to execute
multiple energy evaluations simultaneously.

20

(a)

(b)

Figure 1. The parallel MPI framework in Py-ChemShell (a) before the work of the current eCSE (non-
task-farmed parallelism) and (b) following implementation of the task-farming framework. M: Master;
R: Replica; Py: Python interpreter.

21

Figure 2. Flowchart of Py-ChemShell parallelism: the diagram’s width represents the processes.

To implement the task-farming parallelisation in Py-ChemShell, a number of
substantial changes to the code and the external programs were necessary. To relate
how the mechanism works, let us walk through the flowchart of Py-ChemShell
parallelism presented in Figure 2. There are three built-in ChemShell modules
depicted in the dashed boxes: the executable binary chemsh.x, the main parallel
infrastructural module libparallel.so, and an application module interfacing the
external code (here we take DL_POLY 4 as an example). In the flowchart, we also
use the dotted boxes’ widths (and colours) to indicate the processes on which a
method (namely, subroutine or function) is executed. According to the principle
explained above, the processes are divided into Master and Replica at the level of
task-farming parallelisation. Then the whole procedure of executing a task-farmed
parallel ChemShell calculation is as follows.

I. The user executes the Py-ChemShell application script chemsh.py, which is
pure Python, with command line arguments provided to specify the number of
processes, workgroups, etc., for example:

22

chemsh.py --platform archer --account
my_user_account --nprocs 24 --nworkgroups 2 --walltime
01:00:00 --jobname 2pfd_gamess mgo_2pfd_gamess_gulp.py

for a job to be submitted to the ARCHER standard queue requesting 24 CPU
cores (1 node) and 1.0 h of wall time. In this example, the job will be task-
farmed as nworkgroups is greater than 1, while it is non–task-farmed if
nworkgroups is 1 (default) or left unspecified. All the command line arguments
are available in short forms for the users’ convenience, for example -nwg is
equivalent to --nworkgroups. Getting the help information with argument -h
or --help will print a full list of them.

II. When the submitted job starts to run, the executable binary chemsh.x invokes
the C main routine, which initialises the root MPI parallel environment by
calling the (Fortran) parallelisation initialisers encapsulated within
libparallel.so. In the example of a task-farmed job, nworkgroups
communicators associated to the respective workgroups are created by the MPI
function MPI_COMM_SPLIT acting on the MPI global communicator
MPI_COMM_WORLD.

III. Then it is necessary to call the function registerModules to keep a reference
(i.e., procedure pointer) to the application module, namely DL_POLY 4 in our
example, in libparallel.so during the job’s lifetime, because the application
is not directly visible to the latter, which serves as a generic infrastructural
library. A more detailed discussion is available in section 2.5.

IV. In the next step, the Master processes instantiate Python interpreters. The user
input script containing the information of chemical structures and task
specifications will be parsed in this step. The Python procedure is directly
interoperable with the application’s Fortran 2003 interface via Py-ChemShell’s
internal DL_PY2F library [7], by means of both function calling and memory
sharing. The realisation is based on Fortran 2003’s intrinsic module
iso_c_binding, but we will not discuss the details here as it is not affected by
the implementation of task-farming parallelisation. In the meantime, the Replica
processes do nothing until the Master processes have done the application
initialisation.

V. Both Master and Replica processes run the application wrapper function
wrap_dl_poly using the previously saved reference, through the functions
execFunction and runReplicas, respectively.

VI. The external program DL_POLY 4 should be separately compiled with
the -fPIC flag as a static archive (.a) to be linked against the Py-ChemShell
binaries. As part of the current project we have introduced a new feature into Py-
ChemShell that allows the MM code being executed on just a subset of the
workgroup processes rather than all of them in a workgroup (as shown in Figure
2, the processes for MM can have a width different from all processes). This is
achieved by creating a separate MPI communicator solely for the use of the MM
program, based on a number of processes specified by the user. This feature

23

provides the users the extra flexibility to run QM and MM codes on different
numbers of processes. This is useful as MM programs have been observed to
scale differently on typical QM/MM systems, where the MM region is relatively
small compared to typical classical MD simulations, and the MM program can
therefore suffer from unnecessarily large overheads at high core counts. Also
thanks to this implementation, interfacing to DL_POLY 4 has become feasible in
Py-ChemShell as the former currently has a hard-coded limit for maximum
processes when computing non-periodic systems.

VII. Finally, after the calculation has completed, main issues a command to end all
processes through finaliseParallel.

2.2 Parallelisation of cluster set-up routines

The parallel capability has been first implemented and is under optimisation and
testing in a prototype CONSTRUCT code (version 90), which includes support for
computationally intensive Ewald summations over 3D and 2D periodic systems. A
QM/MM cluster set-up requires a calculation of the electrostatic potential and its
derivatives over a set of atomic centres in an active region where response of all
atoms is modelled explicitly in single point micro-iterative, geometry optimisation
and Hessian calculations. This set is augmented, in particular on 2D models, by a
regular 3D grid spanning a predefined box, or parallelepiped. Typically, the former
includes ~1,500-2,000 centres and the latter ~104–105 sites. Parallelisation here is
performed over the sites of interest using a standard MPI implementation with
replicated data. Scalability tests are in progress. A bottleneck in fitting of point
charges is removed by using appropriate linear algebra routines from ScaLAPACK,
and the code is further parallelised at the stage of calculation of nanoparticle
electrostatic potential and its derivatives at sites of interest, where the size of the
largest nanoparticle tested > 1.6×105 guarantees the good scalability within one node
or cluster. Further work will be undertaken in future to allow for the distributed
memory model for particularly large systems. This work enables a QM/MM model
set-up for systems with massive unit cells and/or large active QM and MM regions.
The code will be transferred to Py-ChemShell on completion of validation tests.

2.3 Task-farm parallelisation of cluster set-up and QM/MM calculation
routines for multiple QM regions

We have built up a QM/MM ZrO2 nanoparticle containing over 1.6×105 atoms and
successfully run a hybrid QM/MM calculation including the electrostatic potential of
the whole particle at the NWChem/DL_POLY 4 level of theory. Our parallel
benchmarks against the sequential calculation show that this type of calculation is
highly scalable. The work is in progress to test task-farming parallelism of the hybrid
QM/MM model set-up to support models with multiple independent and interacting
QM regions, using the CONSTRUCT prototype at present. We have additionally

24

implemented a RESP (restrained electrostatic potential) charge fitting procedure into
Py-ChemShell for use with multiple QM region calculations. This will enable
efficient calculations of one QM region under the influence of another (going beyond
the scope of the current project) following the incorporation of the CONSTRUCT
prototype into Py-ChemShell.

2.4 Task-farming with Global Arrays using Py-ChemShell/NWChem

Global Arrays (GA) is a library developed by Pacific Northwest National Laboratory
for high-performance shared-memory parallel computing with multidimensional
arrays. A variety of popular quantum chemistry packages, including GAMESS-UK,
NWChem, Molpro, Molcas, and TURBOMOLE, have support for GA and also have
been interfaced to Tcl-ChemShell, so the support for GA in Py-ChemShell is a crucial
target for achieving high sustainability in the long-term development.

The GA support has been incorporated into Py-ChemShell as part of the programming
work in this project. Currently, the GA source code comes with NWChem if the user
opts it in for the Py-ChemShell build. The GA static archive is compiled as a separate
shared library libga.so to be linked against ChemShell’s libparallel.so and it
acts as an embedded subsystem in ChemShellParallelModule.

For executing a task-farmed parallel job with the support of GA, the GA environment
and the necessary facility library Memory Allocator (MA) are first of all initialised by
the intrinsic functions GA_INITIALIZE_LTD and MA_INIT. Function GA_NODEID is
used to obtain the global rank information that is equivalent to MPI_WORLD_RANK.
And the task-farming parameters, such as nprocesses per workgroup (obtained from
function GA_NNODES), are applied to create GA process groups. The resulted group
identities and node identities of each group, being dealt with by different physical
processors, are then used by the ChemShell task-farm initialiser to split
MPI_COMM_WORLD into workgroups with the function MPI_COMM_SPLIT, as
described above in Section 2.1. Note that although the GA library does not in
principle have to be built on top of MPI, the only parallel framework ChemShell
supports is MPI and so we can be assured that the MPI workgroups will align
correctly with the GA process groups.

The modular coupling of the GA library to Py-ChemShell secures the usability at
compile time for users, the maintainability and sustainability for developers, and the
accessibility by other external packages such as GAMESS-UK that are possibly
driven by GA.

2.5 Integration of DL_POLY 4 into ChemShell for high performance QM/MM
calculations on nanoparticles

The general-purpose parallel molecular dynamics simulation package DL_POLY has
several variants, out of which DL_POLY 4 [8] is the newest and most highly scalable

25

distribution, being based on domain decomposition. However, only the older
replicated-data version DL_POLY Classic has been incorporated and interfaced into
Tcl-ChemShell. As part of this project we have implemented a DL_POLY 4 interface
for Py-ChemShell, providing significantly enhanced MM scalability compared to Tcl-
ChemShell.

Similar to other software packages used by ChemShell, DL_POLY 4 also yields a few
static library archives (.a extension) when successfully built, which are then
compiled into the shared library libdl_poly.so of Py-ChemShell. The invoking of
libdl_poly.so functions in Py-ChemShell is described in Figure 2. The Fortran
function interface_dl_poly, in the Py-ChemShell interface source file
dl_poly.f90 contained in the shared library, is of bind(c) attribute, thanks to the
intrinsic module iso_c_binding of Fortran 2003 standard, and directly visible to
the Python code as an accessible C function. The main routine of DL_POLY 4 with
modifications for Py-ChemShell is adapted in the source file
dl_poly_routines.f90 and it overrides the native DL_POLY 4 main routine.
When a DL_POLY 4 type job is executed with Py-ChemShell, the Python interface
generates the required CONTROL, CONFIG, and FIELD files according to the user’s
requests and specifications, then invokes the DL_POLY 4 procedures, and finally
collects the computed results, such as energies and gradients, by directly accessing the
memory (rather than reading the text output file).

The parallelism of DL_POLY 4 in Py-ChemShell is also similar to those of other
interfaced external programs. Figure 1 explains how the handle of (i.e., the pointer to)
DL_POLY 4 main routine is managed and passed for the execution on Master and
Replica processes. Moreover, when Py-ChemShell is initialised before any specific
computational chemistry task is run, all installed modules with linked-in libraries are
requested, by function c_registerModules() of the executable binary chemsh.x,
to be registered with their respective handles which are saved in memory by function
c_registerFunction(). At a later stage, after the DL_POLY 4 calculation task is
set up, both the Master and Replica processes will execute the DL_POLY 4 main
routine via the saved function handle. Such design is necessary in ChemShell and the
Replica(s) will not be able to access the DL_POLY 4 main routine otherwise, because
only the Master, whether task-farmed or not, initialises the Python interpreter to
reduce the overhead.

2.6 Compilation on ARCHER

Py-ChemShell, GAMESS-UK 8.0, NWChem 6.6, GULP 4.5, and DL_POLY 4 were
compiled on ARCHER phase 2 using the Cray compiler wrapper ftn with the Intel
Composer XE 15.0.2.164 Fortran and C compilers. Additional tools and libraries used
for the compiling include CMake 3.5.2, Anaconda Python3, Cray MPICH 7.2.6, and
Intel MKL 15.0.2.164. The benchmark calculations in this report were performed on
the ARCHER phase 2 supercomputer—a Cray XC30 MPP system. Each compute

26

node contains two 12-core Intel Ivy bridge processors and 64 GB of memory. The
large nanoparticle containing over 1.6×105 atoms was computed on the large memory
node which has 128 GB memory. The test cases have been chosen to represent
realistic calculations that ChemShell users typically run on ARCHER.

27

3. Results and Discussion

3.1 GAMESS-UK/GULP task-farmed finite-difference gradients calculation

Numerical gradient calculations based on finite-difference methods are an ideal case
for task-farming because they involve a large number of single-point energy
evaluations that are independent from each other. With this method, single-point
calculations are carried out with respect to each minor displacement (1.0×10−5 Å by
default) that is made on every atomic centre along all X, Y, and Z directions. In a one-
point finite difference method (1PFD) the energies are compared with that of the
original structure and the gradient quantity on each centre is estimated by

g1pfd = (E+ − E0)/Δr+

or

g1pfd = (E− − E0)/Δr−

depending on whether the displacements are positive or negative. In a two-point finite
difference method (2PFD) the displacements are bidirectional (both + and −), and the
energy differences are evaluated between the two displaced points:

g2pfd = (E+ − E−)/Δr

Therefore, if numerical gradients of natoms centres are to be evaluated, the total
numbers of independent single-point calculations of 1PFD and 2PFD are natoms×3+1
and natoms×6, respectively.

In Py-ChemShell, the functionality of performing a finite-difference gradients
calculation has been implemented in a fully automatic manner rather than requiring
the user to write a script. The user switches on the method by just specifying, for
example, gradients=’2pfd’, which stands for two-point finite-difference, in the
task definition in a Py-ChemShell input script, for example

job1 = SP(theory=mgo_gamess_gulp, gradients=’2pfd’).run()

where SP is the Python class in Py-ChemShell to do single-point calculations.

28

Figure 3. QM/MM embedded MgO system for the two-point finite-difference (2PFD) numerical
gradients calculations: 2,370 atoms in total; 25 Mg (pink VDW representation) and 9 O (red VDW
representation) atoms in the QM region; 2,326 MM atoms including 107 background point charges
(blue dot representation). Graph produced with VMD 1.9.3.

To validate the code developed during this eCSE project, we have performed a series
of 2PFD benchmark calculations. We set up an embedded QM/MM MgO cluster
containing 2,370 atoms and 1,133 shell centres (the latter for the polarisable MM
description). The numerical gradients of only the 34 QM atoms, namely 102 degrees
of freedom or 204 QM/MM single-point calculations, are computed, which are
enough to demonstrate the performance of Py-ChemShell’s task-farming
parallelisation. In each single-point calculation, a full relaxation of the shell centres is
undertaken until converged (tolerance: 1.0×10−4 a.u.) before the formal energy
evaluation for estimating the gradients, therefore in total there are substantially more
than 204 QM and MM calculations actually performed.

The first set of benchmark was performed at the theory level of GAMESS-UK (BLYP
functional) and GULP, for which the Py-ChemShell interfaces were implemented
before the current eCSE project. The task-farming scalability has been benchmarked
against a range of nworkgroups, on a fixed number of 48 ARCHER phase 2 cores. Table
1 lists the wall time of these calculations with respect to the changing nworkgroups and
Figure 4 visualises the profiles. We have achieved 5.7-fold speedup compared to the
non–task-farmed reference (nworkgroups equals 1) by dividing the tasks into 24
workgroups, which exceeds our target of a 4-fold speedup and fulfils the objective of
the project. The result has proven that the code development during the project results
in a great advance over the original basic parallelisation scheme in Py-ChemShell. It
is easy to find that the scaling profile of the task-farmed calculations is non-linear as
nworkgroups grows and it always has a minimum point. This is due to the increase of
computational time for a single-point GAMESS-UK or GULP execution, when
nworkgroups becomes greater while ncores per workgroup decreases (see the red dashed
line with circles in Figure 4).

29

It is noticeable that the total numbers of single-point calculations vary with the
alteration of nworkgroups. This is because in each workgroup the shells relaxation begins
with a new start and all the following points within the current workgroup are based
on the relaxed shell positions and should take less iterations to converge.

Table 1. Benchmark of task-farmed two-point finite-difference (2PFD) numerical gradients calculation
on QM/MM embedded MgO system against the number of workgroups on a fixed total number of 48
ARCHER cores (2 nodes): the total wall time (ttotal in h) averaged over workgroups and the average
time for single-point (SP) calculations (tSP in sec). Only the QM region (102 degrees of freedom) is
active for the 2PFD evaluation. System size: 2,370 atoms, of which 34 are QM, plus 1,133 shell
centres; QM theory: GAMESS-UK at BLYP level with customised basis set and pseudo potential
(effective core potential or ECP); MM theory: GULP. Shell relaxation tolerance: 1.0×10−4 a.u.

nworkgroups 1 2 4 8 16 24 48
ncores 48 48 48 48 48 48 48
ncores/workgroup 48 24 12 6 3 2 1
nSP 412 416 424 440 472 504 600
tSP/s (GAMESS-UK) 2.9 4.2 5.7 9.8 18.0 25.8 57.6
tSP/s (GULP) 2.1 2.5 2.6 3.0 4.1 5.0 8.1
ttotal/h 1.48 0.85 0.50 0.33 0.27 0.26 0.32
Speedup vs. 1 workgroup 1.0 1.7 2.9 4.5 5.4 5.7 4.6

Figure 4. Benchmark of task-farmed two-point finite-difference (2PFD) numerical gradients
calculation on QM/MM embedded MgO system against the number of workgroups on a fixed total
number of 48 ARCHER cores (2 nodes): the total wall time (ttotal in h) averaged over workgroups and
the average time for single-point (SP) calculations (tSP in s). Only the QM region (102 degrees of
freedom) is active for the 2PFD evaluation. System size: 2,370 atoms, of which 34 are QM, plus 1,133
shell centres; QM theory: GAMESS-UK at BLYP level with customised basis set and pseudo potential
(effective core potential or ECP); MM theory: GULP. Shell relaxation tolerance: 1.0E−4 a.u.

0.0

12.0

24.0

36.0

48.0

60.0

0.0

0.3

0.6

0.9

1.2

1.5

0 8 16 24 32 40 48

tsingle-point /sec
t to

ta
l/

h

nworkgroups

total time (left vertical axis: in h)

average single-point GAMESS-UK time (right vertical axis: in sec)

average single-point GULP time (right vertical axis: in sec)

30

Table 2. Benchmark of task-farmed two-point finite-difference (2PFD) numerical gradients calculation
on QM/MM embedded MgO system against the number of cores and workgroups: each workgroup
consists of 48 ARCHER cores. The total wall time (ttotal in h) averaged over workgroups and the
average time for single-point (SP) calculations (tSP in s) are with respect to the left and right axes,
respectively. Only the QM region (102 degrees of freedom) is active for the 2PFD evaluation. System
size: 2,370 atoms, of which 34 are QM, plus 1,133 shell centres; QM theory: GAMESS-UK at BLYP
level with customised basis set and pseudo potential (effective core potential or ECP); MM theory:
GULP. Shell relaxation tolerance: 1.0×10−4 a.u.

nworkgroups 1 2 4 8
ncores 48 96 192 384
ncores/workgroup 48 48 48 48
nSP 412 416 424 440
tSP/s (GAMESS-UK) 2.9 2.6 2.8 3.1
tSP/s (GULP) 2.1 1.9 2.0 2.0
ttotal/h 1.48 0.72 0.37 0.20
Parallel scaling 1.00 2.05 4.04 7.26

Figure 5. Benchmark of task-farmed two-point finite-difference (2PFD) numerical gradients
calculation on QM/MM embedded MgO system against the number of cores and workgroups: each
workgroup consists of 48 ARCHER cores. The total wall time (ttotal in h) averaged over workgroups
and the average time for single-point (SP) calculations (tSP in s) are with respect to the left and right
axes, respectively. Only the QM region (102 freedoms) is active for the 2PFD evaluation. System size:
2,370 atoms, of which 34 are QM, plus 1,133 shell centres; QM theory: GAMESS-UK at BLYP level
with customised basis set and pseudo potential (effective core potential or ECP); MM theory: GULP.
Shell relaxation tolerance: 1.0×10−4 a.u.

To further demonstrate the power of task-farming parallelisation, we also carried out
similar 2PFD calculations with increasing nworkgroups and total ncores while keeping

0 48 96 144 192 240 288 336 384

0.0

2.0

4.0

6.0

0.0

0.5

1.0

1.5

0 2 4 6 8

ncores

tsingle-point /st to
ta

l/
h

nworkgroups

total time (left vertical axis: in h)

average single-point GAMESS-UK time (right vertical axis: in sec)

average single-point GULP time (right vertical axis: in sec)

31

ncores per workgroup, which is 48 here, unchanged (see Table 2 and Figure 5). The
speedup factor obtained in this way is 7.26 by employing 384 ARCHER cores (16
nodes) and 8 workgroups. In this case the time used for a single-point GAMESS-UK
or GULP execution remains the same level because the available ncores per workgroup
is a constant number. Note also that super-linear scaling is possible because of subtle
differences in the shell relaxation starting points as discussed above.

3.2 NWChem/GULP task-farmed finite-difference gradients calculation

Table 3. Benchmark of task-farmed two-point finite-difference (2PFD) numerical gradients calculation
on QM/MM embedded MgO system against the number of workgroups on a fixed total number of 48
ARCHER cores (2 nodes): the total wall time (ttotal in h) averaged over workgroups and the average
time for single-point (SP) calculations (tSP in s). Only the QM region (102 degrees of freedom) is active
for the 2PFD evaluation. System size: 2,370 atoms, of which 34 are QM, plus 1,133 shell centres; QM
theory: NWChem at BLYP level with customised basis set and pseudo potential (effective core
potential or ECP); MM theory: GULP. Shell relaxation tolerance: 1.0×10−4 a.u.

nworkgroups 1 2 4 8 16 24 48
ncores 48 48 48 48 48 48 48
ncores/workgroup 48 24 12 6 3 2 1
nSP 412 416 424 440 472 504 600
tSP/s (NWChem) 34.1 48.4 83.8 159.8 273.8 370.8 608.6
tSP/s (GULP) 2.6 2.6 2.4 2.9 3.8 5.0 8.3
ttotal/h 4.68 3.23 2.73 2.61 2.54 2.43 2.58
Speedup vs. 1 workgroup 1.0 1.4 1.7 1.8 1.8 1.9 1.8

The second set of benchmark calculations was carried out at the NWChem/GULP
level, for which NWChem was GA-driven. The specifications of density functional,
basis set, effective core potential (ECP), shell centres, nworkgroups, ncores, and ncores per
workgroup are the same as in the previous GAMESS-UK/GULP benchmark to
conduct a fair comparison. However, the achieved speedup is significantly less
compared to GAMESS-UK/GULP (1.9 vs. 5.7, see Table 3 and Figure 6). This can be
explained by the overwhelmingly dominant time used for NWChem and the several-
times slower DFT energy convergence with NWChem for this specific MgO cluster.
Then the overall task-farming scaling becomes determined by the rapidly increasing
time of the QM calculation. It is beyond the scope of this project to investigate why
the convergence behaviour of NWChem is so much poorer than GAMESS-UK for
this system, but we will look into this closely in future work.

Nevertheless the total time for 2PFD calculation can be greatly shortened by utilising
more cores because the task-farming parallelisation in Py-ChemShell is extremely
scalable. And in this case the scaling for this system is just as good for NWChem as
for GAMESS-UK: with 8 workgroups on 384 ARCHER cores the calculation a
speedup of 7.33 times was observed (see Table 4 and Figure 7).

32

Figure 6. Benchmark of task-farmed two-point finite-difference (2PFD) numerical gradients
calculation on QM/MM embedded MgO system against the number of workgroups on a fixed total
number of 48 ARCHER cores (2 nodes): the total wall time (ttotal in h) averaged over workgroups and
the average time for single-point (SP) calculations (tSP in s). Only the QM region (102 freedoms) is
active for the 2PFD evaluation. System size: 2,370 atoms, of which 34 are QM, plus 1,133 shell
centres; QM theory: NWChem at BLYP level with customised basis set and pseudo potential (effective
core potential or ECP); MM theory: GULP. Shell relaxation tolerance: 1.0×10−4 a.u.

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0 8 16 24 32 40 48

tsingle-point /st to
ta

l/
h

nworkgroups

total time (left vertical axis: in h)

average single-point NWChem time (right vertical axis: in sec)

average single-point GULP time (right vertical axis: in sec)

33

Table 4. Benchmark of task-farmed two-point finite-difference (2PFD) numerical gradients calculation
on QM/MM embedded MgO system against the number of cores and workgroups: each workgroup
consists of 48 ARCHER cores. The total wall time (ttotal in h) averaged over workgroups and the
average time for single-point (SP) calculations (tSP in s) are with respect to the left and right axes,
respectively. Only the QM region (102 degrees of freedoms) is active for the 2PFD evaluation. System
size: 2,370 atoms, of which 34 are QM, plus 1,133 shell centres; QM theory: NWChem at BLYP level
with customised basis set and pseudo potential (effective core potential or ECP); MM theory: GULP.
Shell relaxation tolerance: 1.0×10−4 a.u.

nworkgroups 1 2 4 8
ncores 48 96 192 384
ncores/workgroup 48 48 48 48
nSP 412 416 424 440
tSP/s (NWChem) 34.1 33.1 33.5 34.3
tSP/s (GULP) 2.6 2.7 2.8 2.8
ttotal/h 4.68 2.36 1.22 0.64
Parallel scaling 1.00 1.99 3.82 7.33

Figure 7. Benchmark of task-farmed two-point finite-difference (2PFD) numerical gradients
calculation on QM/MM embedded MgO system against the number of cores and workgroups: each
workgroup consists of 48 ARCHER cores. The total wall time (ttotal in h) averaged over workgroups
and the average time for single-point (SP) calculations (tSP in s) are with respect to the left and right
axes, respectively. Only the QM region (102 degrees of freedom) is active for the 2PFD evaluation.
System size: 2,370 atoms, of which 34 are QM, plus 1,133 shell centres; QM theory: NWChem at
BLYP level with customised basis set and pseudo potential (effective core potential or ECP); MM
theory: GULP. Shell relaxation tolerance: 1.0×10−4 a.u.

0 48 96 144 192 240 288 336 384

0.0

10.0

20.0

30.0

40.0

50.0

0.00

1.00

2.00

3.00

4.00

5.00

0 2 4 6 8

ncores

tsingle-point /st to
ta

l/
h

nworkgroups

total time (left vertical axis: in h)

average single-point NWChem time (right vertical axis: in sec)

average single-point GULP time (right vertical axis: in sec)

34

3.3 NWChem/DL_POLY 4 task-farmed finite-difference gradients calculation

Table 5. Benchmark of task-farmed two-point finite-difference (2PFD) numerical gradients calculation
on QM/MM embedded MgO system against the number of workgroups on a fixed total number of 48
ARCHER cores (2 nodes): the total wall time (ttotal in h) averaged over workgroups and the average
time for single-point (SP) calculations (tSP in s). Only the QM region (102 degrees of freedom) is active
for the 2PFD evaluation. System size: 2,370 atoms, of which 34 are QM, without shell centres; QM
theory: NWChem at BLYP level with customised basis set and pseudo potential (effective core
potential or ECP); MM theory: DL_POLY 4.

nworkgroups 1 2 4 8 16 24 48
ncores 48 48 48 48 48 48 48
ncores/workgroup 48 24 12 6 3 2 1
ncores (DL_POLY 4) 8 8 8 4 2 2 1
nSP 205 206 208 212 220 228 252
tSP/s (NWChem) 87.8 150.7 271.5 495.7 857.6 1185.6 1768.8
tSP/s (DL_POLY 4) 0.4 0.4 0.4 0.4 0.4 0.5 0.5
ttotal/h 5.19 4.47 4.12 3.82 3.68 3.73 3.69
Speedup vs. 1 workgroup 1.0 1.2 1.3 1.4 1.4 1.4 1.4

35

Figure 8. Benchmark of task-farmed two-point finite-difference (2PFD) numerical gradients
calculation on QM/MM embedded MgO system against the number of workgroups on a fixed total
number of 48 ARCHER cores (2 nodes): the total wall time (ttotal in h) averaged over workgroups and
the average time for single-point (SP) calculations (tSP in s). Only the QM region (102 degrees of
freedom) is active for the 2PFD evaluation. System size: 2,370 atoms, of which 34 are QM, without
shell centres; QM theory: NWChem at BLYP level with customised basis set and pseudo potential
(effective core potential or ECP); MM theory: DL_POLY 4.

With the newly implemented interface to DL_POLY 4, we have been for the first time
able to benchmark task-farmed NWChem/DL_POLY 4 calculations. However, due to
the current lack of support for shells in the DL_POLY interface, the calculations were
carried out without shell centres. Despite this, the conclusion is similar to the
NWChem/GULP benchmark, i.e. that due to the very slow DFT energy convergence
the speedup gained by task-farming the 2PFD gradients on a fixed number of cores
(see Table 5 and Figure 8) is relatively small compared to GAMESS-UK/GULP,
while the parallel scaling is nevertheless very good when increasing nworkgroups and
ncores at the same time (see Table 6 and Figure 9). It should be pointed out that the
number of cores deployed for DL_POLY 4 in the benchmark was a constant number
(see Table 5 and Figure 8), because the current release of DL_POLY 4 is limited to 8
processes for non-periodic structures. Nevertheless, this does not affect the overall
scaling behaviour for this benchmark calculation.

0.0

300.0

600.0

900.0

1,200.0

1,500.0

1,800.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 8 16 24 32 40 48

tsingle-point /st to
ta

l/
h

nworkgroups

total time (left vertical axis: in h)

average single-point NWChem time (right vertical axis: in sec)

average single-point DL_POLY 4 time (right vertical axis: in sec)

36

Table 6. Benchmark of task-farmed two-point finite-difference (2PFD) numerical gradients calculation
on QM/MM embedded MgO system against the number of workgroups on a fixed total number of 48
ARCHER cores (2 nodes): the total wall time (ttotal in h) averaged over workgroups and the average
time for single-point (SP) calculations (tSP in s). Only the QM region (102 degrees of freedom) is active
for the 2PFD evaluation. System size: 2,370 atoms, of which 34 are QM, without shell centres; QM
theory: NWChem at BLYP level with customised basis set and pseudo potential (effective core
potential or ECP); MM theory: DL_POLY 4.

nworkgroups 1 2 4 8
ncores 48 96 192 384
ncores/workgroup 48 48 48 48
nSP 205 206 208 212
ncores (DL_POLY 4) 8 8 8 8
tSP/s (NWChem) 87.8 86.6 87.7 86.2
tSP/s (DL_POLY 4) 0.4 0.4 0.4 0.4
ttotal/h 5.19 2.56 1.35 0.69
Speedup 1.00 2.03 3.84 7.53

Figure 9. Benchmark of task-farmed two-point finite-difference (2PFD) numerical gradients
calculation on QM/MM embedded MgO system against the number of workgroups on a fixed total
number of 48 ARCHER cores (2 nodes): the total wall time (ttotal in h) averaged over workgroups and
the average time for single-point (SP) calculations (tSP in s). Only the QM region (102 degrees of
freedom) is active for the 2PFD evaluation. System size: 2,370 atoms, of which 34 are QM, without
shell centres; QM theory: NWChem at BLYP level with customised basis set and pseudo potential
(effective core potential or ECP); MM theory: DL_POLY 4.

0 48 96 144 192 240 288 336 384

0.0

15.0

30.0

45.0

60.0

75.0

90.0

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0 2 4 6 8

ncores

tsingle-point /st to
ta

l/
h

nworkgroups

total time (left vertical axis: in h)

average single-point NWChem time (right vertical axis: in sec)

average single-point DL_POLY 4 time (right vertical axis: in sec)

37

3.4 NWChem/DL_POLY 4 modelling of ZrO2 nanoparticle

Figure 10. ZrO2 nanoparticle: 162,994 atoms including 19 Zr (grey VDW representation) and 32 O
(red VDW representation) atoms in the QM region. Graphs generated using VMD 1.9.3.

Due to the embedded cluster model we use for QM/MM solid state calculations, in
ChemShell we do not impose any point group symmetry or periodic boundary
condition (PBC) on a chemical structure. However, the current release of DL_POLY
4 is only able to optimise its own memory usage for periodic systems. As a result, a
large amount of memory is required when we calculate a bulky cluster comprising
over a hundred thousand atoms. Considering that DL_POLY 4 needs to allocate an
N×N array, 162,994 atoms, namely 26,567,044,036 32-bit integers, requires
101,345.23 MB (~98.97 GB) space in memory. Fortunately, in the ARCHER phase 2
system there are 64 large-memory nodes, possessing 128 GB memory per node,
which is adequate for handling our largest ZrO2 setup. The user should use the Py-
ChemShell executable script’s argument --node largemem or -N largemem on
ARCHER to submit the job to the large-memory queue. On the other hand, according
to the memory limit available on the ARCHER machine, we can deduce that the
largest non-periodic system we can calculate at present using DL_POLY 4 is of about
1.85×105 atoms. It is beyond the scope of this project to optimise DL_POLY’s
memory use but we will work with the DL_POLY developers to remove this
limitation in future work.

By contrast, NWChem uses much less memory for the QM region, which contains 51
atoms (19 Zr and 32 O). The number of background point charges (nbqs) 162,943 is as
many as the number of MM atoms but these have a low memory requirement in
NWChem. However, there is an internal parameter limiting the number of
background point charges in NWChem: the default maximum nbqs is only 25,000,
which is inadequate for our embedding system. To overcome this limit, we let Py-

38

ChemShell detect nbqs for the system to compute and if the number is greater than
25,000 automatically insert a line

set bq:max_nbq 200000

into the ChemShell-generated NWChem input script to raise the default limit. The
new limit parameter is the round number that is larger than and closest to the actual
nbqs: for example, it is 200,000 for our system of over 1.6×105 point charge centres.
Another potential issue is the analytical gradients calculation with forces on point-
charge centres for such a system of a great number of point charges, because in this
case NWChem needs much more scratch space than hard-coded to write out
temporary data. To prevent NWChem from crashing due to this reason (error
message: HF1D: Insufficient scratch space), we have to modify the
NWChem source code file src/NWints/api/exactd_mem.F manually to increase
the value for the variable memdum and recompile NWChem. [9]

To assess the performance, we have carried out single-point energy evaluations, at the
level of NWChem Hartree-Fock (HF) and DL_POLY 4 molecular mechanics, for the
ZrO2 nanoparticle of radius 75.0 Å containing 162,994 atoms on a range of ncores. The
resulting time used for the calculations are listed in Table 7, which shows that the Py-
ChemShell code scales very well for this system. The time elapsed for DL_POLY 4
energy evaluation slightly fluctuates but within a reasonable extent for a production
environment.

Table 7. Single-point energy evaluations of QM/MM embedded ZrO2 nanoparticle of radius 75.0 Å
(162,994 atoms) computed on various number of “largemem” node cores. The number of processes for
DL_POLY 4 has been kept as a constant 8. Theory level: NWChem Hartree-Fock and DL_POLY 4
force field.

ncores nnodes ncores (DL_POLY 4) tNWChem/h tDL_POLY/s ttotal/h speedup
24 1 8 11.99 50.1 12.21 1.00
48 2 8 6.15 49.3 6.38 1.91
96 4 8 3.26 58.8 3.47 3.52
192 8 8 1.71 50.8 1.92 6.36

39

4. Conclusion and Outlook

The task-farming parallelism introduced into Py-ChemShell has resulted in significant
performance and scalability improvements for tasks consisting of multiple
independent energy evaluations, which will greatly improve the performance on
ARCHER of numerical gradient and Hessian calculations, nudged elastic band (NEB)
optimisations, population-based optimisations and so on. The benchmarked finite-
difference gradients calculations at various QM/MM theory levels show that the
performance gains in terms of the speedup factor can be as great as 5.7, which is in
excess of the target in the original proposal of this eCSE project. More objectives
achieved during the project include:

• An interface to DL_POLY 4 which enables calculations of large nanomaterials
of over 160,000 atoms, well beyond the capabilities of Tcl-ChemShell.

• Support for task-farming with the Global Arrays (GA) library required for
calculations with NWChem.

• Parallelisation of the embedded cluster setup routines.
• The functionality of charge fitting that is required for performing multi-QM-

region calculations.

The achievements during this project and the data in this technical report will be
prepared for publication in the peer-reviewed literature. An initial alpha release of Py-
ChemShell was made in December 2017 including the code developed for this
project, with source available on request for testing purposes. A first formal release is
scheduled for Spring 2018 and a Py-ChemShell module will then be installed on
ARCHER phase 2 machine for general use.

The main aim of follow-up work will be to exploit the task-farming approach on
ARCHER phase 2 and its successor for scientific applications. Ongoing
collaborations with other scientists will use task-farmed parallel QM/MM calculations
for the study of nanomaterials and heterogeneous catalysis, on systems similar to
those in the benchmark calculations in this report. The task-farmed approach will also
be useful in other areas where large-scale calculations are required, such as
biomolecular modelling. And it could be extended to other types of chemical
calculations, such as multiple-trajectory molecular dynamics simulations.

Further technical developments will also be required to maximise performance of the
code, for example:

• The linear algebra library ScaLAPACK was applied in our benchmark
calculations with NWChem but found to be less efficient than the intrinsic GA
linear algebra solvers. However the latter are not compatible with the task-
farming framework. We will work with the NWChem developers to settle this

40

issue. We will also carry out benchmark calculations to assess the performance
of NWChem driven with different linear algebra libraries, including ELPA, on
the ARCHER phase 2 machine.

• The current ChemShell interface to DL_POLY 4 does not yet support shells
relaxation in the QM/MM context, and we will carry out the implementation
work that is necessary for this. We also find that DL_POLY 4 has limitations in
employing more processes and it quickly reaches the memory limit with non-
periodic systems. Further technical effort on this issue, working together with the
developers of DL_POLY, will obviously benefit the material science community
by allowing them to compute even larger QM/MM chemical systems.

We will also incorporate the prototype parallel cluster setup code in CONSTRUCT
directly into Py-ChemShell once validation is complete.

41

Acknowledgements

This work was funded under the embedded CSE programme of the ARCHER UK
National Supercomputing Service (http://www.archer.ac.uk).

42

References

1 Sherwood P, de Vries AH, Guest MF, Schreckenbach G, Catlow CRA, French SA,
Sokol AA, Bromley ST, Thiel W, Turner AJ, Billeter S, Terstegen F, Thiel S,
Kendrick J, Rogers SC, Casci J, Watson M, King F, Karlsen E, Sjøvoll M, Fahmi A,
Schäfer A, Lennartz C (2003) J Mol Struct (Theochem) 632:1–28

2 Sokol AA, Bromley ST, French SA, Catlow CRA, Sherwood P (2004) Int J
Quantum Chem 99:695–712

3 van Dam HJJ, Guest MF, Sherwood P, Thomas JMH, van Lenthe JH, van Lingen JNJ,
Bailey CL, Bush IJ (2006) J Mol Struct (Theochem) 771:33–41

4 Keal TW, Sherwood P, Dutta G, Sokol AA, Catlow CRA (2011) Proc R Soc A 467:
1900–1924

5 Henkelman G, Jónsson H (2000) J Chem Phys 113:9978–9985
6 Kästner J, Carr JM, Keal TW, Thiel W, Wander A, Sherwood P (2009) J Phys

Chem A 113:11856–11865
7 Lu Y, Keal TW, “DL_PY2F: a library for interfacing Python with modern Fortran”

(in preparation). Not to be confused with the F2PY project for interfacing Python
with legacy Fortran libraries.

8 Todorov IT, Smith W, Trachenko K, Dove MT (2006) J Mater Chem 16:1911–
1918

9 For details, please refer to the discussion at: http://www.nwchem-
sw.org/index.php/Special:AWCforum/st/id2048/HF1D%3A_Insufficient_scratch_spa
ce.html

http://www.nwchem-sw.org/index.php/Special:AWCforum/st/id2048/HF1D%3A_Insufficient_scratch_space.html
http://www.nwchem-sw.org/index.php/Special:AWCforum/st/id2048/HF1D%3A_Insufficient_scratch_space.html
http://www.nwchem-sw.org/index.php/Special:AWCforum/st/id2048/HF1D%3A_Insufficient_scratch_space.html

	1. Publishable Summary
	1.1 Achievement of objectives
	1.2 Project description
	1.3 Summary of the software

	2. Future science and impact
	2.1 Performance Improvement
	2.2 Additional Functionality
	2.3 Sustainability of Software
	2.4 Usability of software
	2.5 Intrinsic value of the software
	2.6 Enabled Science and Impact

	3. Project summary (non publishable)
	3.1 Workpackage summary
	3.2 Reporting statistics
	Effort

	3.3 Engagement and publications

	4. Technical Report (publishable)
	Table of Contents
	1. Introduction
	2. Methodology
	2.1 Task-farming parallelisation
	2.2 Parallelisation of cluster set-up routines
	2.3 Task-farm parallelisation of cluster set-up and QM/MM calculation routines for multiple QM regions
	2.4 Task-farming with Global Arrays using Py-ChemShell/NWChem
	2.5 Integration of DL_POLY 4 into ChemShell for high performance QM/MM calculations on nanoparticles
	2.6 Compilation on ARCHER

	3. Results and Discussion
	3.1 GAMESS-UK/GULP task-farmed finite-difference gradients calculation
	3.2 NWChem/GULP task-farmed finite-difference gradients calculation
	3.3 NWChem/DL_POLY 4 task-farmed finite-difference gradients calculation
	3.4 NWChem/DL_POLY 4 modelling of ZrO2 nanoparticle

	4. Conclusion and Outlook
	Acknowledgements
	References

