
eCSE09-04: CVODE support for FEniCS: Technical Report

Chris Richardson
University of Cambridge
chris@bpi.cam.ac.uk

Christoforos Hadjigeorgiou
University of Cambridge

ch741@cam.ac.uk

June 29, 2018

Abstract

This project interfaced the SUNDIALS CVODE time integration package with FEniCS, a
widely used open-source finite element framework. A target application exploiting the func-
tionality developed in this project is micromagnetic simulations. The new developments
allow users to leverage parallel computation for applicationsthat were previously limited to
serial implementations. Development took place on ARCHER (EPCC) and CSD3 (Cam-
bridge), and packages that include the new developments are available on both systems.
This work was funded under the embedded CSE (eCSE) programme of the ARCHER UK
National Supercomputing Service (http: // www. archer. ac. uk )

1 Project objectives

The objective of this project was to interface the SUNDIALS CVODE [2] time stepping package
to the open-source FEniCS Project libraries [3], supported by concrete application to the field
of micromagnetics. SUNDIALS is written in C, whilst FEniCS has C++ and Python interfaces.
The code developed in this project allows the FEniCS user to access SUNDIALS CVODE
interface from C++ or Python.

In the field of micromagnetics, it is often necessary to integrate equations in time which have
different characteristic timescales, and this requires sophisticated time-stepping tools, such as
CVODE from SUNDIALS. In this report, we outline the demonstration implementations for
two examples: a diffusion problem in 3D, and a micromagnetics application.

2 FEniCS interface to CVODE

FEniCS 2018.1.0 can now be built with SUNDIALS CVODE support by compiling with the
SUNDIALS DIR environment variable set to the directory containing an installation of SUNDIALS
(version 3.0.0 or later). When built with SUNDIALS support, the CVode class becomes available
to use in C++ or Python. The examples shown here will focus on Python, as this is the interface
of choice for the magnetics community.

FEniCS with SUNDIALS/CVODE support is available on ARCHER (module temporarily
at /work/ecse0904/shared/FEniCS/fenics-module), and CSD3 (use module load fenics).

We provide here a brief description of the Python user interface. The CVode class must be
subclassed, to define the derivs() method, which provides the time derivatives which we wish
to integrate. In the example below, CVode is subclassed as MyCVode, and is instantiated with
a choice of Adams or Newton methods for time-stepping, and functional or BDF for iteration.
See the CVODE documentation [1] for details. A vector (usually from a FEniCS Function)
is attached to the CVode instance with the init() method, along with absolute and relative
tolerances. The initial time is assumed to be zero, though this can also be set manually. Sub-
sequently, it is just a matter of calling step() with the desired timestep, to move the equations
forward. A simple example for the diffusion equation is shown below.

1

http://www.archer.ac.uk


from dolfin import *

nx = 12

mesh = UnitCubeMesh(MPI.comm_world, nx, nx, nx)

Q = FunctionSpace(mesh, "CG", 1)

phi = Function(Q)

gaussian = Expression(

"exp(-a*(pow(x[0]-0.5, 2) + pow(x[1]-0.5, 2) + pow(x[2]-0.5,2)))",

a=20., degree=1)

phi.interpolate(gaussian)

v = TestFunction(Q)

u = TrialFunction(Q)

a = u*v*dx

A = assemble(a)

Adiag = PETScVector()

A.init_vector(Adiag, 0)

Adiag[:] = 1.0

Adiag = A*Adiag

ufn = Function(Q)

class MyCVode(CVode):

def derivs(self, t, u, udot):

uvec = ufn.vector()

uvec[:] = u[:]

w = assemble(-dot(grad(ufn), grad(v))*dx)

udot[:] = w[:]/Adiag[:]

cv = MyCVode(CVode.LMM.CV_ADAMS, CVode.ITER.CV_FUNCTIONAL)

cv.init(phi.vector(), 1e-6, 1e-3)

vfile = XDMFFile(mesh.mpi_comm(), filename)

nstep = 50

dt = 0.001

vfile.write(phi, 0.0)

for i in range(nstep):

t = cv.step(dt)

vfile.write(phi, t)

The above diffusion demo is set up with an initial Gaussian peak in the centre of a cube, which
spreads out over time according to the equation:

∂u

∂t
= ∇2u

The results are shown in Figure 1, on a mesh with 23 665 872 cells, running on 256 cores on CSD3.
Timings are shown in Figure 2. Weak scaling for explicit time stepping is difficult to demonstrate
as the number of time steps (and hence derivative evaluations) increases with mesh refinement in
order to maintain stability, so the amount of work increases as the problem size increases, even
with the same number of degrees of freedom per node. To show the reasonableness of the weak
scaling, we also present the total time spent in the timestepping code divided by the number of
evaluations, and it remains constant as the problem size is increased.

2



Figure 1: Diffusion demo, showing (a) initial state, (b) state after 50 steps with CVODE

32 64 128 256
Number of cores

0

200

400

600

800

1000

1200

1400

tim
e/

s

Time to solve (CVODE)
total time

32 64 128 256
Number of cores

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

tim
e/

s

Time to solve per evaluation (CVODE)
time per evaluation

Figure 2: Run time for diffusion equation with CVODE on CSD3, weak scaling. The number
of degrees-of-freedom is fixed at 16 000 per core, so that the largest problem (on 256 cores) is of
size 4 096 000. Increasing the problem size increases the number of derivative evaluations. The
right hand plot shows the time per evaluation.

Strong scaling can also be demonstrated by taking a large model (100× 100× 100 cube) on
32 cores, and solving the same problem on more processors. The results are shown in Figure 3.
The ideal scaling is shown in orange, and the actual times in blue. Efficiency decreases as the
core count increases, as the ratio of communication to computation increases. However, most
of the time is spent in the user-defined derivs() callback, which calculates the derivatives.
Future work could look at reducing the amount of communication in this step, and increasing
the efficiency, although this is outside the scope of the current project.

3



32 64 128 256
Number of cores

0

200

400

600

800

tim
e/

s

actual
ideal

Figure 3: Strong scaling of the diffusion problem on CSD3: solve time in CVODE for a 100 ×
100 × 100 cube problem. Using the 32 core result as a baseline, the actual and ideal runtimes
are shown for up to 256 cores

3 Micromagnetics

A typical magnetics problem involves alignment of the magnetisation vector of a sample to an
applied field. In this process, the magnetisation processes around the direction of the applied
field, ultimately aligning with it. The magnetisation M evolves according to the following
equation:

dM

dt
= − γ

1 + α2
M×Heff −

αγ

1 + α2
M× (M×Heff)

where the effective field Heff is also a known function of the magnetisation. There is an analytical
solution for the simple case of alignment to a constant field (Figure 4), and the numerical results
are in good agreement with the analytical solution.

A larger model was used for testing on HPC systems. A unit cube mesh of size 64× 64× 64
was used to calculate the alignment of the magnetisation to an external field. A typical output
(of a smaller version of the same model) is shown in Figure 5. The initial magnetisation vectors
were set to random values, and their behaviour over time under an applied field was calculated.
As with the diffusion example, strong scaling was demonstrated from 32 to 256 cores on CSD3
and from 24 to 96 cores on ARCHER, with the results shown in Figures 6 and 7. At first
glance, the efficiency seems to be poor at higher core count, but closer inspection (right hand
plot, Figure 6) shows that the majority of the time is not spent in CVODE, but in the user
supplied derivs() method. More work needs to be done to improve the efficiency of this user
supplied part of the code, which encapsulates the physics of the problem being solved. It should
be stressed to end users that the efficiency of the method is only as good as the efficiency of
the user-supplied code for the time derivatives. A similar picture emerged in tests on the KNL
processors on CSD3 (Figure—8). Although we demonstrated operation up to 1024 cores, the
performance had saturated by this point.

Time-stepping with the Newton Method

If information about the derivatives of the derivs() function is available, this can be used
in the Newton method in CVODE (See [1, section 2.1]). Because we are only interested in
parallel implementations, we have only implemented an interface to CVSPILS in CVODE. When

4



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t (ns)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

m
x

simulation
analytic

Figure 4: Analytic solution vs computed solution for field alignment using CVODE

Figure 5: Magnetics demo, showing initial state, an intermediate step, and final state

32 64 128 256
Number of cores

0

20

40

60

80

100

120

tim
e/

s

actual
ideal

32 64 128 256
Number of cores

0

20

40

60

80

100

120

tim
e/

s

CVODE
user callback

Figure 6: Strong scaling of magnetics demo on CSD3. On the left is shown the runtime of
CVODE for four different core counts, and the ideal speedup (compared to the 32 core case).
On the right is shown the breakdown between the time spent in CVODE, and the time spent in
the user routine (derivs() above).

5



24 48 96
Number of cores

0

100

200

300

400

500

600

tim
e/

s

Magnetics example (ARCHER)
CVODE
User

Figure 7: Strong scaling of magnetics demo on ARCHER. The breakdown is shown between the
time spent in CVODE and the time spent in the user routine (derivs() above).

64 128 256 512 1024
Number of cores

0

100

200

300

400

500

600

tim
e/

s

CVODE
user callback

Figure 8: Strong scaling of magnetics demo on KNL processors (CSD3) showing the breakdown
between user code and CVODE (as Figure 7).

6



using the Newton method, in the subclassed CVode class, one must also specify jacobian() and
psolve() functions, providing the functions CVSpilsJacTimesVecFn and CVSpilsPrecSolveFn

as described in the CVODE manual.

4 Conclusions

We have implemented an interface to CVODE for FEniCS, with user interfaces in C++ and
Python. The new interface is fully integrated into the FEniCS release 2018.1.0, and will be
available on platforms where FEniCS can be compiled with SUNDIALS 3.0.0 or later. Testing
on CSD3 in Cambridge and ARCHER has shown good performance for the test problems – a
diffusion problem, and magnetic alignment to an applied field.

References

[1] CVODE online documentation. https://computation.llnl.gov/sites/default/files/

public/cv_guide.pdf.

[2] Alan C Hindmarsh, Peter N Brown, Keith E Grant, Steven L Lee, Radu Serban, Dan E
Shumaker, and Carol S Woodward. SUNDIALS: Suite of nonlinear and differential/algebraic
equation solvers. ACM Transactions on Mathematical Software (TOMS), 31(3):363–396,
2005.

[3] A. Logg, K.-A. Mardal, and G. N. Wells, editors. Automated Solution of Differential Equa-
tions by the Finite Element Method, volume 84 of Lecture Notes in Computational Science
and Engineering. Springer, 2012.

7

https://computation.llnl.gov/sites/default/files/public/cv_guide.pdf
https://computation.llnl.gov/sites/default/files/public/cv_guide.pdf

	Project objectives
	FEniCS interface to CVODE
	Micromagnetics
	Conclusions

