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Abstract

This technical report details the work performed as part of EPCC grant eCSE1002: “An
adjoint solver for variable-density flows in the low Mach number limit” to implement a highly
scalable, high-order variable-density solver in the Incompact3D framework and an adjoint solver
for use with Incompact3D. The project was split into three work packages: 1) add additional vari-
ables and their associated transport equations to Incompact3D and implement a variable-density
solver based on the constant-coefficient Poisson solver; 2) add variable transport properties to
Incompact3D and a variable-coefficient Poisson solver; 3) implement and test an adjoint solver.

This work has produced the variable-density flow solver “QuasIncompact3D” which is freely
available at https://github.com/ptb0890/Quasincompact3d. It has been validated for in-
compressible and variable-density flows and its scalability demonstrated on several TIER-1/0
supercomputers, covering both x86-64 and accelerator based architectures. A continuous adjoint
solver has been implemented and is currently being tested.

QuasIncompact3D has been introduced to the scientific community through talks and a paper
submitted for peer review. QuasIncompact3D will be used to conduct detailed studies of non-
Boussinesq gravity currents and as part of a collaboration within Imperial College to investigate
mixing in variable-density flows. Furthermore, QuasIncompact3D will be used as the basis for
another eCSE project (eCSE1303) to extend its capabilities to simulate free surface flows with
even higher density (air/water) than considered in this project.

1 Introduction

The principal aim of this project was to develop Incompact3D for use in variable-density flow cases,
providing for the ARCHER community a highly scalable, high-order, variable-density flow solver.
This was done in the context of low speed flows using the Low Mach Number (LMN) approximation,
with governing equations summarised as

p(0) = ρT , (1)

Dρ

Dt
= −ρ∇ · u , (2)

∇p(0) = 0 , (3)

ρ
DT

Dt
=

1

RePr
∇2T , (4)

ρ
Du

Dt
= −∇p(1) +

1

Re
∇ · τ , (5)
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where ρ, u and T are the density, velocity vector and temperature respectively; p(0) and p(1) are
the thermodynamic and mechanical pressure as arise in the LMN decomposition; τ is the viscous
stress tensor; and Re and Pr are the Reynolds and Prandtl numbers respectively.

In addition an adjoint solver was implemented for Incompact3D. The adjoint can be used for
efficiently performing design/sensitivity studies where there are a large number of parameters to
optimise over.

Incompact3d is an open-source high-order flow solver that can undertake turbulence-resolving
simulations of fluid flow phenonema on Tier-0/Tier-1 systems. Since 2012, it is freely available to
scientific community (www.incompact3d.com and https://github.com/xcompact3d) and it has a
community of more than 250 active users worldwide. Publications made with this solver can be
found at http://www.incompact3d.com/impact.html.

Incompact3d is a Fortran 90/95 finite-difference code which solves the incompressible Navier-
Stokes equations (and a transport equation for passive scalars) on a Cartesian mesh using sixth
order schemes for the spatial discretisation while Runge-Kutta or Adams-Bashforth schemes are
used for the time advancement. To treat the incompressibility condition, a fractional step method
requires to solve a Poisson equation, fully solved in spectral space via the use of relevant 3D Fast
Fourier transforms. Combined with the concept of the modified wave number (Lele, 1992), this
direct (i.e. non-iterative) technique allows the implementation of the divergence-free condition up
to machine accuracy. A partially staggered mesh is used where the pressure mesh is shifted by a
half-mesh from the velocity mesh in each direction. This type of mesh organization leads to more
physically realistic pressure fields with no spurious oscillations. More details about the code can
be found in (Laizet and Lamballais, 2009).

The high level of parallelisation (good scalability with more than one million MPI-processes)
in Incompact3d is achieved thanks to a highly scalable 2D domain decomposition library and a
distributed Fast Fourier Transform (FFT) interface (Laizet and Li, 2011). This open-source library
is available at http://www.2decomp.org/. The 3D computational domain is divided in pencils with
three different options referred as X-pencil, Y-pencil and Z-pencil (fig.1 from left to right). The
derivatives and interpolations in the x-direction (y-direction, z-direction) are performed in X-pencil
(Y-pencil, Z-pencil), respectively. The 3D FFTs required by the Poisson solver are also broken down
as series of 1D FFTs computed in one direction at a time. The global transpositions to switch from
one pencil decomposition to another are performed with the MPI command MPI ALLTOALL(V).
Incompact3d can scale well up to one million MPI-processes for simulations with several billion
mesh nodes (Laizet and Li, 2011).

Incompact3d has been used recently for a variety of projects ranging from fractal-generated
turbulence, gravity currents, mixing layers, boundary layers, impinging jets on a heated plate, active
flow control of a turbulent jet and simulations of plasma actuators (see http://www.incompact3d.
com/impact.html for all the Incompact3d-based papers published in the last few years by different
research groups worldwide).

This report is organised as follows: sections 2, 3 and 4 summarise the aims of work packages
1-3, the work done and the achievement of the goals; section 5 details the outputs of this work in
terms of interacting with the community; and the report is concluded in section 6.

2 Work Package 1 (WP1)

The main objectives for WP1 were:
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Figure 1: Schematic representation of the 2D domain decomposition showing from left to right the
X-, Y- and Z-pencils. Colour indicates one processor/MPI rank.

• Adding additional variables required for LMN to Incompact3D (ρ, T )

• Adding additional transport equations for LMN ((2), (4)) - noting that only one needs to be
solved, the unsolved for variable can be obtained through the equation of state (1) - and (3)
is enforced by the Poisson solver

• Conversion of existing subroutines to LMN versions for example adding density to the mo-
mentum equations (5)

• Implementation of the constant-coefficient Poisson equation solver

The main task was to convert the current Poisson solver to one solving the constant-coefficient
Poisson equation for a variable density flow:

∇2p(1) =
1

∆t

(
∇ · (ρu)? −∇ · (ρu)n+1

)
, (6)

where (ρu)? is the intermediate momentum obtained from the first step of the fractional step
method (Chorin, 1997) and (ρu)n+1 is the target divergence of momentum. As the divergence of
momentum at the next time is unknown a-priori, its value is extrapolated by means of a backward
finite-difference:

∇ · (ρu)n+1 = − ∂ρ

∂t

∣∣∣∣n+1

≈ −ρ
n+1 − ρn

∆t
, (7)

following an approach which has been widely used in the literature (Golanski et al., 2005; McMurtry
et al., 1986).

The implementation was tested by simulating the incompressible Taylor-Green Vortex (Jammy
et al., 2016; Wang et al., 2013) and the non-isothermal mixing layer of Golanski et al. (2005) and
comparing the results with reference data.

The Taylor-Green test case compares QuasIncompact3D with results obtained with “classic”
Incompact3D both on a 1283 node mesh with the reference data of Jammy et al. (2016) on a 5123

node mesh. As fig.2 shows there is a good agreement with the results of QuasIncompact3D and
Incompact3D - as a constant density incompressible flow this is the desired result indicating that
the Navier-Stokes solver is working. The comparison with Jammy et al. (2016) also shows good
agreement despite the lower resolution used here.
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Figure 2: Taylor-Green Vortex test case. In the figure legends Ref corresponds to data from Jammy
et al. (2016), I3D are the results obtained with “classic” Incompact3D and LMN are those obtained
with QuasIncompact3D using the constant-coefficient (-CC) and variable-coefficient (-VC) Poisson
solvers.

The results of the non-isothermal mixing layer in fig.3 show good agreement with the reference
results of Golanski et al. (2005), indicating that the LMN solver is working.

To test scalability, the triply periodic setup used for the Taylor-Green vortex was used on the
TIER-0/TIER-1 supercomputers ARCHER, MARCONI and HAZEL HEN of EPCC, CINECA
and HLRS respectively. Architecturally ARCHER (Cray XC30) and HAZEL HEN (Cray XC40)
are similar, both based on 2 × 12 core Intel R©Xeon R©processors running at 2.7 GHz and 2.5 GHz
respectively, therefore similar performance is expected. MARCONI represents an alternative ar-
chitecture based on Intel R©Xeon R©Phi 1× 68 core accelerators running at 1.4 GHz and is expected
to be somewhat slower, it is however representative of potential future accelerator based machines
and presents an opportunity to test QuasIncompact3D on a many core architecture.

As a particular aim of this work is to demonstrate scalability on ARCHER, scaling tests on
archer were performed on 1008 ≤ NCPU ≤ 16128 cores. To maintain the number of mesh nodes
per core in the approximate range 50k ≤ n/CPU ≤ 1M , the runs on MARCONI are split into
two sets: one covering 1 to 16 nodes (64 ≤ NCPU ≤ 1024) and the other covering 16 to 93
(1024 ≤ NCPU ≤ 5952) nodes (essentially the largest available allocation). Taking a similar
approach, the runs on HAZEL HEN cover 2048 ≤ NCPU ≤ 32768 and 4096 ≤ NCPU ≤ 65536
cores for 2048× 1024× 1204 and 20483 mesh nodes respectively.

The runtimes are shown in fig.4. Good scalability of the code is shown both on ARCHER and
the other machines considered. HAZEL HEN represents a similar architecture to ARCHER being
based on x86-64 whereas MARCONI is a KNL accelerator based machine indicating that the code
is suitable, or could be adapted, for use on upcoming machine architectures.
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Figure 3: Non-isothermal mixing layer test case showing results from QuasIncompact3D using
constant-coefficient and variable-coefficient Poisson equations (ρ̃ = ρ0, ρ

h respectively) and reference
data of Golanski et al. (2005) respectively.

2.1 WP1 Success

The constant-coefficient algorithm was implemented and shown to agree well with reference data.
Good scaling was demonstrated up to 16k cores on ARCHER and additionally on MARCONI and
HAZEL HEN with 65k cores.

3 Work Package 2 (WP2)

In WP2 the code was extended to add variable transport properties (viscosity, diffusivity) following
the approach of Motheau and Abraham (2016): in the general case the diffusive terms are treated
conservatively i.e.

∇ · q = ∇ · k∇T , (8)

to guarantee conservation of variables; whereas in the case of the viscous stress it is implemented
non-conservatively as

∇ · τ = µ∇ ·
(
τ

µ

)
+ (∇µ) ·

(
τ

µ

)
, (9)

to prevent oscillations in the velocity field.
Also in WP2 a variable-coefficient Poisson equation was implemented (selectable at runtime) of

the form

∇ · 1

ρn+1
∇p(1) =

1

∆t

(
∇ · u? −∇ · un+1

)
, (10)
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Figure 4: Scaling of QuasIncompact3D on ARCHER, MARCONI and HAZEL HEN. Following
the nomenclature in fig.2, -CC and -VC indicates either the constant- or variable-coefficient Poisson
equation solver being run on the named machine.

which has the advantage over the constant-coefficient Poisson equation that ∇ ·un+1 is calculated
as part of the solution process and thus does not require extrapolation - as shown by Nicoud (2000)
only this approach enforces the velocity divergence constraint. The variable-coefficient Poisson
equation cannot however be solved directly using fast Poisson solvers and is recast in iterative form

∇2p(1)
ν+1

= ρ̃

(
1

∆t

(
∇ · u? −∇ · un+1

)
−∇ · 1

ρn+1
∇p(1)

ν
)

+ ∇2p(1)
ν

(11)

where superscript ν is an iteration counter and ρ̃ is a freely chosen density scale. This implemen-
tation was also tested on the Taylor-Green Vortex and non-isothermal mixing layer, shown in fig.2
and fig.3. As for the constant-coefficient Poisson solver, the variable-coefficient Poisson solver shows
good agreement with the reference data.

In fig.3 two sets of results are shown for the variable-coefficient Poisson solver relating to different
choices of ρ̃. The usual choice for ρ̃ is the minimum of the density field, denoted ρ0, chosen for
stability purposes (Motheau and Abraham, 2016). During implementation of the variable-coefficient
solver an alternative choice was developed, based on harmonic averages. Nothing in (11) requires
that ρ̃ be a constant - it simply needs to be evaluated at the same point as the Laplacian of pressure
term. In the Incompact3D framework a partially staggered mesh arrangement is employed with
transported variables collocated at mesh nodes and pressure stored at the centre of control volumes
defined by these nodes. Interpolating density to these control volume centres directly to evaluate ρ̃
tends towards the maximum value in the interpolation stencil - if we compare this with the previous
choice of ρ̃ = ρ0, we can see that the minimum density has a stabilising effect by minimising the
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size of the explicit term in (11). By using the harmonic average to evaluate ρ̃, i.e.

ρ̃ = ρh =
(

1/ρ
)−1

, (12)

where the overline indicates interpolation, it can be shown that the harmonic average tends towards
the minimum value in the stencil. Consequently the stabilising effect of ρ̃ = ρ0 is obtained in areas
where density changes and in areas of uniform density ρ̃ takes the local value, giving better scaling
of the explicit term. Testing on the non-isothermal mixing layer case showed that using harmonic
average, instead of minimum value, to calculate ρ̃ lead to faster convergence, as shown in table 1.
These results also demonstrate the importance of efficiently solving the Poisson equation, with
& 90% of time spent in the Poisson solver for both variable-coefficient versions.

Table 1: Cost analysis of non-isothermal mixing layer simulations showing: CPU time per timestep;
average number of iterations of Poisson solver per timestep; cost in terms of iterations relative to
constant-coefficient solver; and percentage of time spent in Poisson solver.

Solver CPU / ∆t [s] Iterations Cost [%] in Poisson

CC 4.48× 10−2 1 1 23.4
VC ρ0 6.16× 10−1 34.1 13.75 94.2
VC ρh 3.53× 10−1 18.8 7.88 89.9

The variable-coefficient solver’s scaling was also tested on ARCHER, MARCONI and HAZEL
HEN, using the setup described in §2 with results shown in fig.4. For the scaling tests the number
of iterations of the variable-coefficient Poisson solver was fixed at 5 per timestep and as can be seen
the scalability remains close to ideal across architectures, the cost per timestep simply increases
due to the cost of the iterations.

3.1 WP2 Success

The scaling of the variable-coefficient algorithm was successfully tested on ARCHER with 16k cores,
demonstrating good scaling in comparison with the constant-coefficient algorithm, the additional
cost of the algorithm is due to the cost of the iterations, but does not affect the scaling performance.
This scaling was demonstrated on additional machines MARCONI and HAZEL HEN up to 65k
cores.

In simulating both incompressible and variable-density flows, the variable-coefficient algorithm
shows good agreement with the constant-coefficient algorithm and the reference data.

4 Work Package 3 (WP3)

An adjoint solver has been implemented for Incompact3D using the continuous (optimise-then-
discretise) approach. This is outlined in fig.5 showing the flow of information through the flow
solver forward in time for t0 ≤ t ≤ tend, at the end of the simulation period the adjoint solver
is initialised based on the final time state, the adjoint solver then evolves the adjoint variables
back in time to t0 to determine the gradient and hence change in initial conditions required. This
iteration is repeated in a process known as Direct Adjoint Looping (Kerswell, 2018) until an optimal
condition at tend is achieved. The adjoint solver is currently being tested in collaboration with Dr.
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Ubaid Ali Qadri at Cambridge and it is planned to take the preliminary results to form the basis
of an application for EPSRC funding.

5 Outputs

As a result of this work, two talks were given: one at the Incompact3D User Group at Imperial
College and one at the UKFluids2018 conference at Manchester University. These talks, focusing
on the development of QuasIncompact3D, allowed to communicate directly with current users of
Incompact3D and the wider fluid dynamics community in the UK of the new capabilities that
QuasIncompact3D enables for fluid dynamics research.

In addition to the above talks, a manuscript has been prepared and submitted for peer review
introducing QuasIncompact3D with a preliminary investigation of non-Boussinesq gravity currents.
Additional papers related to this work are under preparation: one to investigate non-Boussinesq
gravity currents in more detail at high Reynolds number and one focusing on the adjoint solver in
collaboration with Dr. Ubaid Ali Qadri at Cambridge.

Finally, in future work it is proposed to use QuasIncompact3D to investigate non-Boussinesq
gravity currents in greater detail and a collaboration has been proposed within Imperial College
to use QuasIncompact3D to investigate mixing in variable-density flows. This work also forms the
basis of a newly funded eCSE project (eCSE1303) to extend QuasIncompact3D for use to simulate
free-surface flows with considerably higher density ratios (that of air/water) than considered here.

6 Conclusion

This work has met its targets of developing a variable-density flow solver in the Xcompact3D
framework with algorithms for solving both the constant- and variable-coefficient Poisson equations
and good agreement shown with reference data. It was shown to maintain good scaling on ARCHER
up to 16k cores and on the MARCONI and HAZEL HEN supercomputers with up to 65k cores on
HAZEL HEN. An adjoint solver has been implemented and is currently being tested in collaboration
with Dr. Ubaid Ali Qadri at Cambridge.

QuasIncompact3D has been introduced to both the Incompact3D user group and the wider UK
fluid dynamics community by way of presentations. It is already having an impact in the scientific
community, with a paper submitted for peer review and with future work in the form of an internal
collaboration being proposed.
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