
Performance of Parallel IO on ARCHER

David Henty, Adrian Jackson, Charles Moulinec and Vendel Szeremi

June 15, 2015 – Version 1.0

2 PARALLEL IO ON ARCHER

1. Abstract

File input and output often become a severe bottleneck when parallel applica-

tions run on large numbers of processors. Simple methods such as performing

all IO via a single master process are no longer feasible at scale. In order to

take full advantage of the potential of the Lustre file system on ARCHER, IO also

needs to be done in parallel.

In this paper we investigate the performance that can be achieved using

parallel MPI-IO. We benchmark a simple test case of a three-dimensional dis-

tributed dataset . We find that MPI-IO can improve performance by orders of

magnitude over naive serial IO, but that this requires some tuning of parame-

ters. First, MPI-IO must be configured to use collective routines; second, the

Lustre file system must be configured to use appropriate parallel striping.

2. Typical parallel IO patterns

Saving data to disk can be quite tricky even in serial. In essence, a file is simply

a stream of bytes so a user may have to substantially rearrange their program

data before writing it to disk. For example, if a weather model has three main

arrays storing air velocity, pressure and temperature then it might make sense

for all values for a particular grid point to be stored together in memory within

the application (e.g. for performance reasons). However, in the file it might be

preferable for the velocities for all gridpoints to be stored in sequence, then all

the pressure values then the temperatures (e.g. to help in post-processing).

The problem in parallel is that data rearrangement is almost always required

if the parallel code is to produce the same file as the serial one. For example, in

a general domain decomposition parallel tasks do not own a single contiguous

chunk of the global data set. Even in a simple 2D decomposition, the local data

comes from many different locations in the file, with each local row coming

from a different place.

PARALLEL IO ON ARCHER 3

This rearrangement implies communication between tasks during the IO

phases, often in a new pattern that is not used within the computational phases.

There are a number of ways to simplify this communication pattern which leads

to four common IO strategies. Here we concentrate on the case of writing data:

HPC codes typically write much more data than they read, and also writing is a

more complicated (and typically slower) operation in parallel than reading.

Multiple files, multiple writers The simplest approach is to avoid the data re-

arrangement completely, with each task writing its data to a different file.

In practice this does not avoid the issue, but simply delays it to a later

time: subsequent post-processing or analysis programs will almost cer-

tainly have to access multiple files to read the data they require.

Single file, single writer This is the other extreme, where a single master task

coordinates the data rearrangement, e.g. receiving rows from many tasks

and reconstructing the global data set prior to writing it out. This pattern

is also called Master IO.

Single file, multiple writers Here the data rearrangement is achieved by each

task writing its data directly to the correct place in the file, e.g each indi-

vidual row is written to a different location. Although this does not involve

transfer of data between tasks, the tasks will still have to communicate to

avoid their writes clashing with each other.

Single file, collective writers This sits between the two approaches above where

either one or all of the parallel tasks perform IO; here we identify a subset

of tasks to perform the IO. These IO tasks must communicate with the

computational tasks to receive and rearrange the data, and must coordi-

nate with each other to avoid IO clashes.

Note that, other than the “multiple files, multiple writers”, all these methods

should produce identical output to each other on any number of processors.

However, they may have very different performance characteristics.

4 PARALLEL IO ON ARCHER

3. Lustre filesystem

Fundamentally, Lustre achieves performance by storing a single file across mul-

tiple disks; this is called striping. By understanding a few basic features of the

parallel Lustre filesystem on ARCHER it is possible to identify the potential bot-

tlenecks and limiting factors in the parallel IO strategies outlined above.

3.1. Lustre architecture

The Lustre architecture has four important components:

Object Storage Targets The OST’s correspond to the actual storage devices; one

OST may contain more than one physical disk.

Object Storage Servers The OSS’s are the servers that perform the IO and are

directly connected to one or more OST’s. They can also communicate ef-

ficiently with the compute nodes running user jobs as they are directly

connected to the high performance Aries interconnect.

Meta Data Server Each Lustre file system has its own MDS which stores all the

information about the file, e.g. its location, access permissions and strip-

ing settings.

Lustre Clients Remote clients that can mount the Lustre filesystem, e.g. the

compute nodes or the login nodes.

On ARCHER, each OST comprises a RAID6 array with 10 (8+2) disks; each

OSS controls 4 OST’s. The Lustre filesystem in /work is actually split into three

1.5 PB file systems, /fs2, /fs3 and /fs4, which have 12, 12 and 14 OSS’s (48, 48

and 56 OST’s) respectively.

The basic point is that Lustre is optimised for very large IO operations on

contiguous blocks of data, as these can easily be parallelised across OSS’s and

OST’s.

PARALLEL IO ON ARCHER 5

3.2. Achieving performance

Given the architecture of the Lustre parallel filesystem, the following potential

issues can be identified for each of the parallel IO strategies described above

(these are fairly typical for all parallel filesystems).

Multiple files, multiple writers This has the potential to achieve high band-

width if different files are stored on different OST’s. However, as individual

files are likely to be small it is probably best not to stripe each file across

multiple OST’s. The major issue with this strategy is that accessing large

numbers of files at once will stress the filesystem. For example, simply

opening thousands of files may overload the MDS as this is a serial opera-

tion. This will limit the scalability of this approach.

Single file, single writer If only one process is writing then it cannot take ad-

vantage of striping: IO rates will be limited by the bandwidth achievable

from a single process and will not scale.

Single file, multiple writers Although this could in principle benefit from strip-

ing if different processes access different regions of the file, in practice this

is not the case as the IO system cannot know in advance if there will be any

clashes. Typically the file will be locked be each process while it writes,

which serialises the IO and introduces locking overheads. This approach

would not be expected to scale.

Single file, collective writers As the IO is collective, i.e. the IO system knows

that all processes are writing at the same time and can therefore gather

global information on the IO patterns, this approach has the potential

to achieve high bandwidth. The number of writers can be set to match

the available number of OST’s. By careful choice of which writers access

which sections of the file, the IO system can guarantee that there are no

IO clashes and avoid the need for file locking. Therefore, with appropriate

file striping, this approach has the potential to scale.

6 PARALLEL IO ON ARCHER

3.3. Controlling striping

Lustre gives simple mechanisms for control over how many OST’s a file is striped.

For this reason, from now on we will talk exclusively about the number of OST’s

and not the number of OSS’s.

Although striping is essential to achieving high bandwidth from parallel ap-

plications, it increases the access time for small files. Most user files are small

(source code, object files etc.) and are accessed using serial programs (editors,

compilers etc.) so having a very high level of striping for all files would adversely

impact users. As a compromise, the default level of striping on ARCHER is set

to 4. Files are striped in a round-robin (i.e. block-cyclic) manner with a fixed

stripe size (the block size). By default this is set to 1 MiB, and although it can

easily be changed we do not investigate the effects of different stripe sizes here.

To set the number of stripes to, for example, 16:

user@archer$ lfs setstripe -c 16 outfile.dat

will stripe the file outfile.dat across 16 OST’s. If setstripe is used on a direc-

tory, it sets the default striping for all files subsequently created in that directory.

In practice, this is the easiest way to control file striping.

A stripe count of -1 indicates that a file should be striped across all available

OST’s (around 50 on ARCHER). Information on the actual striping of a file or

directory can be found using:

user@archer$ lfs getstripe outfile.dat

4. MPI-IO

For these studies we use the MPI-IO routines from the system-supplied Cray

MPI library, which have been optimised for the Lustre file system.

PARALLEL IO ON ARCHER 7

4.1. Parallel IO model

The MPI-IO parts of the MPI standard allow users to perform parallel IO in a

portable manner across different platforms. There are many ways to use dif-

ferent MPI-IO calls to achieve the same result, but here we choose the highest

level of abstraction . The important point is that this approach delegates all the

details of how the IO is actually performed to the MPI-IO library. A well-written

library can then choose to do the IO in an optimal way.

In this approach, each process describes which portion(s) of the parallel file

it owns, i.e. the mapping from the local to the global data layout. This is done

using MPI derived datatypes, and in MPI-IO is called setting the file view. Note

that, in general, a process will own many disjoint sections of the file. Just as

in standard send and receive routines, MPI datatypes can be used to describe

what sections of the local data array are sent (or written to file in MPI-IO). This

often occurs when the local data arrays are defined with halos, but only the core

data should actually be saved.

Having fully described the IO pattern, data can be written to file using two

routines:

1. MPI_File_write()

2. MPI_File_write_all()

Routine 1 is non-collective, with each process acting independently of the

others; this corresponds to the “single file, multiple writers” pattern. MPI-IO

has to process each request individually, and as argued in Section 3.2. this will

not be very efficient. As well as potentially serialising access to the file, each

process will typically be making a large number of small IO transactions. For

example, in a simple 2D decomposition each local row is written to a different

position in the file.

Routine 2 is collective, i.e. we guarantee that all processes call this routine

together; this corresponds to the “single file, collective writers” pattern. This

allows the MPI-IO library to implement a number of important optimisations:

8 PARALLEL IO ON ARCHER

1. nominate a subset of MPI processes as writers, the number being selected

automatically to match the available OSS’s and OST’s (i.e. the file striping);

2. aggregate data from multiple processes together before writing, ensuring

a smaller number of larger IO transactions;

3. ensure that there are no clashes between different writers so that IO trans-

actions can take place in parallel across all the OST’s.

4.2. Test case

The test case is very simple: a 3D array of double precision floating-point vari-

ables distributed across processes using a 3D block decomposition. To better

mimic a real application, the local arrays have depth-1 halos in every dimen-

sion. We do weak scaling studies, fixing the local volume so the global volume

(i.e. the file size) L3 scales with the number of processes P . For simplicity we

restrict ourselves to cubic local volumes of size n3 and decompositions with the

same number of processes in each dimension.

Even with this simple setup, the IO pattern is surprisingly complex: if IO

were done in the “single file, multiple writers” pattern then each process would

have to perform n2 individual writes of size n, distributed across the file.

4.3. Benchio code

The benchio code is available from the ARCHER web site - see IO benchmarking

code at http://www.archer.ac.uk/training/course-material/2014/09/IO DL/. It

is written in Fortran 90, although the performance from an equivalent C code

should be the same. As supplied, it writes the array in two ways:

Serial IO corresponding to the “single file, single writer” pattern. Here we sim-

ply call Fortran’s built-in IO routines using “stream” access to ensure raw

binary output. This gives us a baseline figure for the bandwidth achiev-

able from a single process.

http://www.archer.ac.uk/training/course-material/2014/09/IO_DL/

PARALLEL IO ON ARCHER 9

Parallel IO corresponding to the “single file, collective writer” pattern using

MPI_File_write_all. We would expect this to give the highest bandwidth.

The program loops over three subdirectories and writes in serial and parallel

to each of them: defstriped, striped and unstriped. The first directory should

have the default striping (stripe count of 4) and the others should be set, using

lfs setstripe, to have 1 stripe and full striping (stripe count of -1) respectively.

The IO pattern can be described very simply using the datatype creation

routine MPI_Type_create_subarray; this is used to create the filetype. The

same routine is used to create the mpi_subarray type which corresponds to the

local data array with all the halos removed.

The data itself is stored in an array iodata(0:n+1,0:n+1,0:n+1). To aid ver-

ification, the halos are set to -1 and the core data is set so that, if all the ar-

rays are written correctly, the file should contain the double-precision values

1.0, 2.0, 3.0, . . . , L3 − 1, L3 in order.

Once the file has been opened with MPI_File_open and attached to the file

handle fh, setting the file view and writing in parallel are deceptively simple

using these two datatypes:

call MPI_File_set_view(fh, disp, MPI_DOUBLE_PRECISION, filetype, &

’native’, MPI_INFO_NULL, ierr)

...

call MPI_File_write_all(fh, iodata, 1, mpi_subarray, status, ierr)

Notes:

• using ’native’ format ensures raw binary output;

• MPI_INFO_NULL means we provide no additional hints to MPI-IO about the

best way to perform the parallel IO;

10 PARALLEL IO ON ARCHER

• we write a single mpi_subarray, i.e. the core L3 block of iodata excluding

halos, collectively from all processes in parallel;

• it is important to check the returned ierr values as, unlike the rest of MPI,

errors in MPI-IO routines are not fatal by default;

• for simplicity, the serial IO code just writes the data from process 0 a mul-

tiple of P times to give an output file of the correct size – the values will

not be the same as the parallel file.

5. Results

As described above, the benchio test code performs both serial IO (single file,

single writer) and parallel IO using MPI-IO (single file, multiple writers and sin-

gle file, collective writers).

5.1. Effects of striping

First we compare serial and parallel collective IO, and investigate how their per-

formance is affected by the three choices of striping: no striping, default strip-

ing and full striping.

The results are shown in Figure 1 and Figure 2 for local data sizes of n3 = 1283

and n3 = 2563 doubles respectively. These are weak scaling plots: the total file

size increases linearly with the number of processes.

As expected, Figure 1 shows that all the serial results are basically the same at

around 500 GiB/s, unaffected by the striping. This is also the same value we get

for the unstriped parallel IO; here the IO is effectively serialised and we easily

saturate the bandwidth of the single target OST. This is a very important point to

note: it is not sufficient simply to have parallel IO coming from the application;

the filesystem must also be configured to operate in parallel.

However, having gone to the effort of implementing MPI-IO the bandwidth

can now be improved by using striping with no further code changes. With the

PARALLEL IO ON ARCHER 11

default striping of 4, we achieve 4 times the serial bandwidth at 2GiB/s on more

than a few hundred processes. With full striping, the bandwidth increases with

process count up to a maximum of 14 GiB/s on 4096 processes (the largest case

tested here). This corresponds to 64 GiB of data being written in under 5 sec-

onds; using serial IO, or parallel IO without striping, takes around 150 seconds.

Figure 2 shows the same basic pattern with serial and unstriped parallel IO

all achieving around 500 MiB/s. However, the effect of striping seems to be

reduced by a factor of two compared to the smaller test case: we achieve 1 GiB/s

and 8 GiB/s for default and full striping respectively. This might be improved

by increasing the stripe size above the default of 1 MiB, although this was not

investigated here.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 4 16 64 256 1024 4096

G
iB

/s

Processes

Striped parallel
Defstriped parallel
Unstriped parallel

Striped serial
Defstriped serial
Unstriped serial

Figure 1: Write bandwidth for local data volume n3 = 1283

5.2. Collective vs non-collective IO

To investigate the effects of non-collective IO, the call to MPI_File_write_all()

is simply replaced by MPI_File_write(). With the latter form, the MPI-IO li-

brary cannot assume that all processes are performing IO at the same time (al-

though we know in practice that they are), so cannot apply any of the optimisa-

tions described in Section 4.1..

12 PARALLEL IO ON ARCHER

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 4 16 64 256 1024 4096

G
iB

/s

Processes

Striped parallel
Defstriped parallel
Unstriped parallel

Striped serial
Defstriped serial
Unstriped serial

Figure 2: Write bandwidth for local data volume n3 = 2563

Processes Individual (MiB/s) Collective (MiB/s)

1 49.5 441

8 5.9 404

64 2.4 1630

Table 1: Bandwidth of Individual and Collective IO

The effects on performance and scaling are dramatic - see Table 1 where we

used the default striping. The performance of non-collective IO is extremely

poor, and degrades rapidly with increasing process count (we did not bench-

mark on more than 64 processes as the time taken was so long).

6. Conclusions

We have shown that it is possible to achieve very good IO rates on ARCHER

with the MPI-IO library, of the order of 10’s of GiB/s on a few thousand cores.

However, this requires three things to be true:

1. IO must be done in parallel from the application;

PARALLEL IO ON ARCHER 13

2. the IO must be done in a collective manner, i.e. use the “single file, multi-

ple writers” model;

3. the Lustre file system must use parallel IO to the disks, i.e. the files must

be appropriately striped.

If either the application or the file system are not operating in parallel then

IO rates are the same as a serial program: a single OST saturates at around 500

MiB/s. If the IO is not done collectively then bandwidths drops to a few MiB/s

on as few as 64 cores

We would expect these results to apply in general to other IO libraries such

as NetCDF and HDF5, i.e. good IO bandwidth requires parallel collective IO

routines with striped files. We are currently investigating this in detail.

7. Acknowledgements

The authors would like to thank Dr Tom Edwards of the Cray Centre of Excel-

lence at EPCC for his invaluable advice on configuring Lustre on ARCHER.

