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1. Introduction

This document is concerned with how to record and analyse the data provided by the

power monitoring hardware counters on ARCHER, a Cray XC30 platform. Basic de-

scriptions of these counters can be obtained by running papi_native_avail on the

compute nodes of the host system using the aprun command.

There are two groups of power monitoring counters, running average power limit

(RAPL) and power management (PM), see the following two tables.

Table 1: Running average power limit counters

Name Description Units

UNITS:POWER Scaling factor for power (3) n/a

UNITS:ENERGY Scaling factor for energy (16) n/a

UNITS:TIME Scaling factor for time (10) n/a

THERMAL SPEC Thermal specification (130) W

MINIMUM POWER Minimum power (64) W

MAXIMUM POWER Maximum power (200) W

MAXIMUM TIME WINDOW Maximum time window (0.046) s

PACKAGE ENERGY Energy used by chip package nJ

DRAM ENERGY Energy used by package DRAM nJ

PP0 ENERGY Power-plane zero package energy nJ

The counters have a time resolution of 100 ms [4]. The term package relates to the

compute node processor: each node has two 12-core processors and therefore two pack-

ages. This means there is one set of RAPL counters per socket, whereas for PM coun-

ters, there is one set per node (or per two sockets). The PP0 package energy counter

value is a summation of the energy used by all the cores (including processor caches)

within a package [6]. Note, several of the hardware counters are by definition fixed (e.g.,

UNITS:POWER) and so only ever have one value, which is given in brackets at the end
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Table 2: Power management counters

Name Description Units

PM POWER CAP:NODE Compute node power cap W

PM POWER:NODE Compute node point-in-time power W

PM ENERGY:NODE Compute node accumulated energy J

PM POWER CAP:ACC Accelerator power cap W

PM POWER:ACC Accelerator point-in-time power W

PM ENERGY:ACC Accelerator accumulated energy J

PM FRESHNESS Number of times HSS has updated data structure n/a

PM GENERATION Number of times a power cap change was made n/a

PM STARTUP Timestamp of the last startup cycles

PM VERSION Version of sysfs directory tree n/a

of the counter description.

Two molecular modelling codes (DL POLY v4.05 and CP2K v2.6.14482) are used to

show how to access power management data for simulation jobs that run over multiple

compute nodes. The former application achieves parallelism through MPI exclusively,

and can be built for all three programming environments available on ARCHER (Cray,

Intel and gnu). We would expect that the choice of compiler should not impact energy

use, nevertheless this paper will confirm whether this is indeed the case. The second

code, CP2K, will be run in a mixed OpenMP/MPI mode (using the gnu environment):

this provides a more useful case as we explore whether or not adding more threads raises

or lowers the energy use.
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2. CrayPat

We begin with the Cray Performance and Analysis Tool (CrayPat) as the most straightfor-

ward way to obtain power management data. This tool requires that the application code

is instrumented before it is submitted to the job launcher. Before the code is compiled the

perftools software module must be loaded.

module load perftools

Then, after compilation, the application executable is instrumented by the pat_build

command.

pat_build DLPOLY.Z

This produces a new executable with a +pat suffix. It is this instrumented program that is

launched via the aprun command and controlled according to various properties supplied

by the job submission script, an excerpt of which follows.

module load perftools

export PAT_RT_SUMMARY=1

export PAT_RT_PERFCTR=UNITS:POWER,UNITS:ENERGY,UNITS:TIME, /

THERMAL_SPEC,MINIMUM_POWER,MAXIMUM_POWER,MAXIMUM_TIME_WINDOW, /

PACKAGE_ENERGY,PP0_ENERGY,DRAM_ENERGY, /

PM_POWER_CAP:NODE,PM_POWER:NODE,PM_ENERGY:NODE, /

PM_FRESHNESS,PM_GENERATION,PM_STARTUP,PM_VERSION

export OMP_NUM_THREADS=1

aprun -n 96 ./DLPOLY.Z+pat >& stdouterr
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Note, the ACC power management counters are missing from the list assigned to the

PAT_RT_PERFECTR environment variable. Although those three counters are returned by

papi_native_avail, CrayPat reports an error, insisting that those performance counter

event names do not exist. Having the summary flag set to one will generate one set

of values for the counters listed in the submission script. If the code runs success-

fully, one of the output files will have a .xf extension, which can then be analysed via

the pat_report command.

pat_report ./DLPOLY.Z+pat+43271-13s.xf

Something like the following output is then generated.

...

Table 3: Program HW Performance Counter Data

...

THERMAL_SPEC 130 W

MINIMUM_POWER 64 W

MAXIMUM_POWER 200 W

MAXIMUM_TIME_WINDOW 0.046 s

PACKAGE_ENERGY 530.413 J

PP0_ENERGY 387.626 J

DRAM_ENERGY 58.021 J

PM_POWER:NODE 286 W

PM_ENERGY:NODE 767.219 J

PM_FRESHNESS 28.417

PM_STARTUP 1414408518017769 cycles

...
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In the previous example, the DL POLY code was run over four nodes, and so, by

default the energies are averages, whereas the powers (also by default) are maximum val-

ues: e.g., PACKAGE ENERGY is the average energy used by the eight processors, and

PM POWER:NODE is the maximum point-in-time power recorded (for one node) during

the execution run. The pat_report tool has the flexibility to accept different aggrega-

tions [4].

Unfortunately, it doesn’t seem possible to record multiple counter readings during ex-

ecution on a per node basis. A CrayPat sampling job is specified by using the -S option

with the pat_build command and by adding two extra options to the job script, see be-

low.

export PAT_RT_EXPERIMENT=samp_pc_time

export PAT_RT_INTERVAL=1000

The interval is in microseconds. This setup does not generate a set of sampling data

that could be used to investigate how energy use varies throughout the run; the only data

generated specific to the selected counters appears to be in aggregate form only.

3. PM MPI Library

Hart et al. [3] have provided a library that allows one to monitor the power manage-

ment (hereafter PM) counters directly. This library, pm lib, accesses the actual counter

files, located at /sys/cray/pm_counters. There are five counters available, instanta-

neous power and cumulative energy for normal nodes and for accelerated nodes — these

measurements cover CPU, memory and any other hardware contained on the processor

daughter card; any consumption due to the Aries network controllers and beyond is ex-

cluded however. The fifth counter is the freshness counter, which should always be read

before reading the other counters. After a set of readings have been taken, the freshness

counter is read again and if the value is unchanged, we know we have a consistent set

of measurements: i.e., the power and energy were taken at the same time. The counters
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have a temporal resolution of 100 ms. The library can be linked with Fortran and C/C++

programs: however, for codes running on several multi-core nodes it is necessary to ex-

tend the library in two significant ways. First, only one MPI process per node must use

pm lib to access the PM counters on that node; and second, only one MPI process (e.g.,

rank 0) should collate the data, writing it to a single file.

The result of these extensions is a new library called pm mpi lib, which has an inter-

face featuring just three functions, defined in Appendix A. When instrumenting a code

for the first time, the area of interest is the main loop that controls how the simulation pro-

gresses. For DL POLY, this is the loop at the start of the ./VV/w_md_v.f90 source file,

which can be instrumented as follows. A call to the pm mpi lib function, pm_mpi_open,

should be placed immediately before the loop. This function establishes the MPI rank of

the calling process and then obtains the unique number of the node on which the process

is running via MPI_Get_processor_name. The node number is then used to split the

MPI_COMM_WORLD communicator: i.e., the node number is used as the colour of the sub-

communicator, which is effectively a communicator for all processes on the same node.

Thus, an appropriate MPI_Allreduce can be used to determine which process has the

lowest numerical rank value on any given node, thereby choosing the process that will

monitor the PM counters. All such monitoring processes (one per node) then go on to

create another sub-communicator, one that unites them all, which allows rank 0 to deter-

mine the number of monitors. In addition to these tasks, the monitoring processes open

their respective PM counter files; rank 0 also gets the current MPI time.

The second pm mpi lib function call, pm_mpi_monitor, can be placed at various

points within the application loop. As the name suggests, this function allows all mon-

itoring processes to read the PM counters; for all other processes, no read is performed

and the holding variables are set to zero. A subsequent MPI_Allreduce can then be used

to sum the counter values over all nodes; thus the total cumulative energy can be ob-

tained. For the point-in-time power counters however, the sum is divided by the number

of monitoring processes in order to calculate an average. Rank 0 then writes this data to

the output file, see Appendix A for a description of the output format.

Finally, the third and last call, pm_mpi_close, is placed immediately outside the main
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application loop: this call ensures that each monitoring process closes its PM counter files

and that rank 0 also closes the output file.

4. Results

The three functions of the pm mpi lib library have been used to instrument the DL POLY

and CP2K codes mentioned earlier, such that the PM counters for cumulative energy and

point-in-time power are read for each node (four for DL POLY and eight for CP2K). The

data is then collated and output as a total energy and as an average power for each time

step of the simulation.

4.1. Compiler Dependence

Figure 1 shows histograms of energy use per simulation step, defined as one iteration of

the loop at the start of the DL POLY source file, ./VV/w_md_v.f90. There are three sets

of histograms, one for each compiler environment: grey represents the Cray compiler,

blue is Intel and red is gnu. For each run, the number of nodes assigned (4) and the input

data set were the same: the latter was taken from the standard DL POLY test case 40

(ionic liquid dimethylimidazolium chloride), see Section 8.1 of the user manual [5]. Fur-

thermore, the molecular simulation defined by the test case was extended by increasing

the value of the steps parameter in the CONTROL file from 750 to 20 000.

The histograms do not correspond with a single normal distribution: in general, there

is one main peak and two minor ones appearing at lower energies, see Figure 1 (left col-

umn). In addition, there are high-energy simulation steps that occur every one thousand

iterations (right column): this is how often the DL_POLY restart files are written to disk.

The same DL POLY job was run six times for each compiler environment and an average

performance was calculated in order to tease out any compiler dependence. Repeatedly

running exactly the same executable with the same input data will produce some varia-

tion in energy usage: however, we expect this variation to be mitigated by the fact that

all jobs were run on the ARCHER test development server, where resource contention is

minimal.
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Figure 1: Histograms of energy used per DL POLY simulation step over 0 − 200 J (left
column) and > 200 J (right column). Plots are based on results obtained from the third
run of six for each compiler environment, e.g., Cray (top row), Intel (middle row) and
gnu (bottom row).
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The Cray-compiled code had the lowest energy usage (1.92 ± 0.02 MJ over 1748 ±

2.6 s), followed by the Intel-compiled code (1.97 ± 0.01 MJ over 1770 ± 2.7 s), and

lastly, the gnu-compiled code (2 ± 0.02 MJ over 1823 ± 2 s). The Cray energy usage

is approximately 3% lower (1.92/1.97≈ 0.97) than the Intel result and 4% lower than

the mean result for the gnu runs. Unsurprisingly, energy usage follows execution time.

However, the Intel runs show a marked difference as regards the high-energy iterations:

for the Cray and gnu runs, these high-energy iterations are a factor of sixteen higher

than the energy used for 99.9% of the simulation steps, whereas for the Intel runs, this

factor increases to around ninety-five. Note, the Intel-compiled code would be the most

energy efficient, if the total for the high-energy iterations (0.18 MJ) was reduced such

that it matched the high-energy totals achieved by the Cray and gnu runs: in fact, this

hypothetical reduction would make the Intel runs the most efficient (∼ 5% lower than the

Cray energy usage).

In order to understand more fully the impact of execution times on energy consump-

tion, we show the distributions of execution times per simulation step (Figure 2) for the

same runs as those featured in Figure 1. Again, the distributions are divided into two

groups, short iterations (left column) and long iterations (right column) occurring every

1000 simulation steps (i.e., the restart dumps). The high energy steps consume more en-

ergy because those iterations take longer to execute; also, the Intel high-energy iterations

run for the longest (by almost an order of magnitude).

Figure 3 presents example point-in-time power histograms. Unlike the cumulative

energy results, these histograms correspond with a single normal distribution, giving a

meaningful average and deviation, see the x-axis labels. Hence, the normal distributions

inferred by the power histograms for all eighteen runs are also given in the bottom right

plot. The Cray and gnu compiled codes have similar distributions as regards power mea-

surements: therefore, the difference in energy usage for these two codes can be attributed

to execution time. Overall, the Intel runs show the highest mean power and we also know

that the high-energy iterations for the Intel runs are the most time consuming. Neverthe-

less, the Intel energy usage is mitigated by the fact that the majority low-energy iterations

execute the fastest on average: in the left column of Figure 2, the Intel distribution is
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Figure 2: Histograms of time duration per DL POLY simulation step over < 0.1 s (left
column) and > 0.1 s (right column). Plots are based on results obtained from the third run
of six for each compiler environment, e.g., Cray (top row), Intel (middle row) and gnu
(bottom row).
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Figure 3: The point-in-time power histograms based on results obtained from the second
run of six for each compiler environment. The plot at bottom right compares the normal
distributions inferred from the power histograms of all eighteen runs.

furthest to the left. This mitigating factor is perhaps the reason why the Intel runs do not

show the highest energy consumption.

4.2. OpenMP Threads

This section examines the impact of OpenMP thread count on energy usage when running

the gnu-compiled CP2K code with the input data set entitled H2O-1024.inp, which can

be found in the ./tests/QS/benchmark/ folder that resides within the CP2K installa-

tion directory. A particular loop within the CP2K source file, ./src/motion/md_run.F,

was instrumented with the three pm mpi lib functions mentioned earlier. The loop in
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question is labelled Real MD Loop and exists within the qs_mol_dyn_low subroutine.

In addition, the value of the MOTION.MD.STEPS input parameter (i.e., the number of loop

iterations) was changed from 10 to 100. The results were generated by running the CP2K

code over eight nodes for a variety of threading options. Table 3 reveals an energy-usage

Table 3: Cumulative energies and run times for different CP2K threading options

aprun options Cumulative Energy [MJ] Run Time [hr]

-n 192 -N 24 -S 12 -d 1 52.263 5.4

-n 96 -N 12 -S 6 -d 2 49.727 5.94

-n 64 -N 8 -S 4 -d 3 45.052 5.27

-n 48 -N 6 -S 3 -d 4 48.819 6.26

-n 32 -N 4 -S 2 -d 6 54.284 7.47

-n 24 -N 3 -d 8 71.54 11.57

-n 16 -N 2 -S 1 -d 12 91.342 16.72

sweet spot for 3 threads per MPI process; increasing the thread count further causes the

performance to deteriorate. The aprun option, -ss, was also set for six of the seven

cases: this option was not used for the eight thread case, since it is not possible to evenly

divide three MPI processes over two NUMA regions.
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Figure 4: CP2K energy consumption against runtime for different OpenMP threading
options (1-4 and 6 threads).
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Figure 4 allows the reader to see the change in energy consumption and runtimes

when increasing the thread count from one to six. Further increases in the thread count

merely lengthen the runtime, thereby consuming more energy, see the last two rows of

Table 3. Interesting behaviour occurs for low thread counts, e.g., when changing from

one to two threads, the energy use comes down even though the runtime has increased.

At three threads, both the runtime and energy consumption are reduced — this is the

sweet spot.
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Figure 5: The normal distributions (left) and the cumulative distribution functions (right)
inferred from the point-in-time power histograms across all OpenMP threading counts
used for the CP2K code. A colour-blind safe version of this figure can be found in Ap-
pendix B.

The deviation in power readings becomes much more pronounced when the number of

threads per MPI process is greater than one, see Figure 5 (left). Single-threaded execution

gives a sharply defined peak at around 310 W. The power distributions increase in width

for thread counts of 2-6, and then become even wider for the highest thread counts of 8

and 10. From left to right, the distribution peaks (and CDF curves) correspond to 12, 4,

2, 8, 6, 1 and 3 threads: this means that specifying 12 threads per MPI process draws the

lowest mean power, whereas 3 threads results in the highest power usage.

5. Conclusions and Further Work

The DL POLY results show the expected correlation between energy use and runtime.

The choice of compiler does produce noticeable differences in energy usage: the Cray-
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compiled code uses the least energy, followed by Intel then gnu. However, the results also

show that the evenly-spaced restart write iterations (19 out of 20 000) run for significantly

longer, and furthermore, this disparity is more extreme for the Intel runs. Closer exami-

nation of the data, reveals that the Intel runs would use the least energy, if the compiler

options could be set such that the Intel high-energy iterations had runtimes comparable

with the Cray and gnu results.

Energy use will depend on the number of threads per MPI process: using multiple

threads can reduce runtimes and energy usage but not beyond a certain thread count.

Three threads is the optimum thread count for CP2K running over eight nodes with the

H2O-1024.inp data set. Further work could investigate the importance of node assign-

ment within the ARCHER dragonfly topology [1] as regards energy consumption. For

example, running with three threads per MPI process, one could compare energy usages

for the following scenarios.

1. All eight nodes from the same chassis.

2. Four nodes from one chassis and four nodes from a different chassis.

3. Same as scenario two but involving a chassis from a different group.

The first scenario involves communication within the rank 1 network only, the second

will also feature communication over the rank 2 network, whereas the final scenario will

involve communication over the optical rank 3 network. It is assumed that runtimes

will increase should more communication hops between nodes be required: hence, these

different scenarios should result in different node energies being recorded. The usefulness

of this work would be in understanding the energy cost of communicating via the rank

2 and/or rank 3 networks. This work would of course need to be done on ARCHER

itself as opposed to the test and development server (tds), which comprises only one

group containing two cabinets. Note, the CP2K tests involving thread counts of 4 and 12

were performed on nodes that resided in different cabinets; the other CP2K tests involved

nodes within the same chassis, thereby utilising the rank 1 network only. Regarding the

DL POLY results, 16 out of 18 runs were executed on nodes within the same chassis:

the remaining two runs (one Cray and one gnu) featured a single node in the second tds

cabinet.
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A PM MPI Library

The source code is held in a Git repository [2] together with a makefile, and two small test

harnesses that demonstrate how to call the library functions from Fortran and C codes.

There is also a test folder containing readme.txt files that explain exactly how to inte-

grate the pm mpi lib source with the DL POLY and CP2K source codes. The following

text describes the interface provided by the three functions of the pm mpi lib library.

1. void pm_mpi_open(char* pmc_out_fn): the parameter, pmc_out_fn, points

to a null-terminated string that specifies the name of the file that will hold the PM

counter data: a NULL parameter will set the output file name to ./PMC. The open

function also calls pm_mpi_monitor(0) in order to determine a baseline for the

cumulative energy. In addition, rank 0 establishes a temporal baseline by calling

MPI_Wtime and also writes a one-line header to the output file, which gives the

library version followed by the names of the data items that will appear in the

subsequent lines.

2. void pm_mpi_monitor(int nstep): the parameter, nstep, allows the client to

label each set of counter values that are output by rank 0. The output file comprises

lines of space-separated fields. A description of each field follows (the C-language

data type is given in square brackets).

Time [double]: the time as measured by MPI_Wtime (called by rank zero) that

has elapsed since the last call to pm_mpi_open.

Step [int]: a simple numerical label: e.g., the iteration count, assuming

pm_mpi_monitor is being called from within a loop.

Point-in-time power [double]: the average power reading across all assigned

compute nodes.

Energy [unsigned long long int]: the energy used by all assigned compute nodes

since the last call to pm_mpi_open.

3. void pm_mpi_close(void): calls pm_mpi_monitor(nstep+1). All counter

files are closed, then rank 0 closes the output file.
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B Colour-blind Safe Version of Figure 5
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Figure 6: The normal distributions (left) and the cumulative distribution functions (right)
inferred from the point-in-time power histograms across all OpenMP threading counts
used for the CP2K code.
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