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Abstract—In this paper, we describe how we have used a
combination of the LASSi tool (developed by Cray) and the SAFE
software (developed by EPCC) to collect and analyse Lustre
I/O performance data for all jobs running on the UK national
supercomputing service, ARCHER; and to provide reports on I/O
usage for users in our standard reporting framework. We also
present results from analysis of parallel I/O use on ARCHER
and analysis on the potential impact of different applications
on file system performance using metrics we have derived from
the LASSi data. We show that the performance data from LASSi
reveals how the same application can stress different components
of the file system depending on how it is run, and how the LASSi
risk metrics allow us to identify use cases that could potentially
cause issues for global I/O performance and work with users to
improve their I/O use. We use the IO-500 benchmark to help
us understand how LASSi risk metrics correspond to observed
performance on the ARCHER file systems. We also use LASSi
data imported into SAFE to identify I/O use patterns associated
with different research areas, understand how the research
workflow gives rise to the observed patterns and project how this
will affect I/O requirements in the future. Finally, we provide an
overview of likely future directions for the continuation of this
work.

Index Terms—Supercomputers, High performance computing,
Parallel architectures, Data storage systems, Performance anal-
ysis

I. INTRODUCTION

I/O technologies in supercomputer systems are becoming
increasingly complex and diverse. For example, a recent trend
has been to add a new kind of high-performance but limited
capacity I/O to supercomputing systems—often referred to as
burst-buffer technologies. Recent examples include Intel Op-
tane [1] and Cray DataWarp [2]. These technologies typically
provide orders of magnitude more performance, both in terms
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of I/O bandwidth and I/O operations per second, at the expense
of total storage capacities.

To help establish the potential impact of such novel tech-
nologies within the HPC sphere, we need to revisit and
update our data on the typical I/O requirements of modern
applications.

There are many factors which affect the I/O behavioural
requirements of any scientific application, and these factors
have been changing rapidly in recent years. For example, the
ratio of network performance to node-level performance tends
to influence how much work each node needs to perform.
As the node-level performance tends to grow faster than the
network-level performance, the trend is for each node to be
given more work, often implying larger I/O requirements per
node. The complexity of the interactions between performance
behaviour and system development are discussed by Lock-
wood et al [3]. They investigate the performance behaviour
from the perspective of applications and the file system
quantifying the performance development over the course of
a year. Due to these changes, we cannot rely on conventional
wisdom, nor even older results, when understanding current
I/O requirements on HPC systems. Instead, we need up-to-
date, good quality data with which to reason and inform
our assumptions of current systems and predictions of future
systems.

In this study, we have used ARCHER1—the UK’s national
supercomputer—as an example of a high-end supercomputer.
ARCHER reached #19 in the Top500 upon its launch in 2013.
It is a 4,920 node Cray XC30, and consists of over 118,000
Intel Ivy Bridge cores, with two 2.7 GHz, 12-core E5-2697 v2
CPUs per node. 4,544 of the 4,920 nodes have 64 GiB per node
(2.66 GiB per core), while the remaining 376 ‘high memory’

1http://www.archer.ac.uk



nodes have 128 GiB each (5.32 GiB per core). The ARCHER
production service has three Lustre file systems each based
on a Cray Sonexion 1600 appliance. Two file systems have
12 OSS and one file system has 14 OSS. Each OSS is a
Seagate Sonexion 1600 OSS controller module, 1 x Intel Xeon
CPU E5-2648L @ 1.80GHz, 32GB memory. Each OSS has
40 discs, 4 OSTs per OSS, 10 discs per OST. These 10 discs
are in RAID6, i.e. 8+2. There are also a number of hot spares
and RAID and ext3 journaling SSDs on each OSS. Each disc
is a 4TB SEAGATE ST4000NM0023 (Constellation ES.3 -
3.5” - SAS 6Gb/s - 7,200 rpm). There is one MDS and one
backup MDS per file system. Each MDS is a Cary Sonexion
1600 MDS controller module, 2 x Intel(R) Xeon(R) CPU E5-
2680 @ 2.70GHz Each of the 3 MDTs comprise 14 discs
in RAID10. Each disc is a 600GB SEAGATE ST9600205SS
(Enterprise Performance 10K 600 GB - 2.5” - SAS 6Gb/s -
10,000 rpm). Each client accesses the three file systems via 18
LNet router nodes internal to the ARCHER system. Each of
the three file systems are attached to 10, 10 or 14 router nodes
respectively; some router nodes service more than one path.
This is complex, involving overlapping primary and secondary
paths, however, the rule that affects performance is that the
primary LNet path is configured so that all clients access 3
OSS nodes via 2 LNet router nodes. MDS nodes are accessed
from the clients via 2 LNet router nodes each.

HPC applications scheduled to run on ARCHER have to
share resources, in particular the file system and network.
Even though these shared resources are built to scale well
and provide high performance, they can become a bottleneck
when multiple applications stress them at the same time.
Occasionally the applications also use these shared resources
inefficiently, which may impact other applications using the
same resource.

Users expect applications to perform consistently in a time
frame, i.e., the overall runtime for a given job does not vary
excessively. Often time limits are chosen such that slowdown
can cause jobs to fail. However, from time to time users
would report that their applications were running slower than
expected or interactive file system response was sub-optimal.
Based on this feedback, we set out to analyse all of the
applications running on ARCHER for their current I/O usage,
to try to understand the variability of I/O performance on the
system and its link to running applications. In contrast to other
studies (that typically profile the I/O use of a small number
of benchmark applications), we are sampling the I/O usage of
every job run on ARCHER in the analysis period. Thus our
data should complement those from previous studies.

Most monitoring tools [4], [5], [6], [7], [8] and [9] only
provide raw I/O statistics of file systems or applications.
UMAMI [10] and MELT [11] add features for slowdown anal-
ysis but require expertise. Previous work introduced metrics
such as I/O severity [12] and File System Utilisation(FSU) [13]
for studying I/O and application slowdown. We have devel-
oped a non-invasive framework where it is easy to identify
applications with unusual I/O behaviour, and by targeting
application interactions with the file system. The following

sections describe this framework along with insights gained
from running IO-500 benchmarks and detail the I/O patterns
observed by the data analysis.

II. TOOLS AND METHODOLOGY

This section first introduces the tools used to monitor the
I/O utilisation and to relate them with user jobs. To validate
the behavior of this approach on a well known pattern, we
utilise the IO-500 benchmark.

A. LASSi

LASSi (Log Analytics for Shared System resource with
instrumentation) [14] was developed by the Cray Centre of
Excellence (CoE) for ARCHER to provide system staff with
the ability to find and understand contention in the file system.

LASSi is a tool to analyse the slowdown of applications due
to the shared Lustre file system usage. It provides HPC system
support staff the ability to monitor and profile the I/O usage of
applications over time. LASSi uses a metric-based approach
to study the quantity and I/O quality. Metrics describe the risk
of slowdown of applications at any time and also identifies
the applications that cause such high risks. This information
is then made available to the user or application developer as
appropriate.

LASSi was originally planned to be an extension of work
undertaken by Diana Moise of Cray on the HLRS system [15].
This work defined aggressor and victim jobs running at the
same time. Grouping applications based on the exact command
line used, the study defined slowdown as a deviation from the
mean run times by 1.5 times or more. This study did not
use any I/O or network statistics but was attempting to spot
correlations in job runtimes.

Victim detection was based on observing applications that
run slower than the average run time for an application group.
Aggressor detection was based on applications that overlap
with the victims. The Victim and Aggressor model based on
concurrent running fails to provide useful insights when we
move to a system like ARCHER, which is at a scale where
there are always a large number of applications running.

In ARCHER, user reports of slowdown are usually ad-
dressed by analysing the raw Lustre statistics, stored in a
MySQL database called LAPCAT (developed by Martin Laf-
ferty from the onsite Cray systems team). LAPCAT provides
the following Lustre I/O statistics from each compute node
over time:

• OSS: read kb, read ops, write kb, write ops, other
• MDS: open, close, mknod, link, unlink, mkdir, rmdir, ren,

getattr, setattr, getxattr, setxattr, statfs, sync, sdr, cdr
Before LASSi, mapping the Lustre statistics to application

runs and looking for patterns using LAPCAT was a pro-
hibitively long time to investigate.

We designed LASSi to use defined metrics that indicate
problematic behaviour on the Lustre file systems. Ultimately,
we have shown that there is less distinction between Victims
and Aggressors. An alternative explanation, supported by the



LASSi-derived data, is that so-called Victims are simply using
the Lustre file system more heavily than so-called Aggressors.

Application run time depends on multiple factors such as
compute clock speed, memory bandwidth, I/O bandwidth,
network bandwidth and scientific configuration (dataset size
or complexity). LASSi aims only to model application run
time variation due to I/O.

B. Risk-Metric Based Approach

These metrics are motivated by the fact that we expect
users will report slowdown only when their application run
takes longer than usual. We focus on I/O as the most likely
cause of unexpected application slowdown and begin with the
assumption that, in isolation, slowdown only happens when
an application does more I/O than expected (for example, due
to configuration or code change) or when an application has
an unusually high resource requirement than normal at a time
when the file system is busier than usual.

To characterise situations that cause slowdown means con-
sidering raw I/O rate, metadata operations and quality (size)
of I/O operations. For example, Lustre file system usage is
optimal when at least 1 MB is read or written for each
operation (read ops or write ops).

The central metadata server can sustain a certain rate of
metadata operations, above which any metadata request from
any application or group of applications will cause slowdown.
To provide the type of analysis required, LASSi must com-
prehend this complex job mix of different applications with
widely different read/write patterns, the metadata operations
running at the same time and how these interact and affect each
other. This requirement informs the definition of the LASSi
metrics.

C. Definition of Metrics

Firstly, we define metrics that indicate quantity and I/O
quality operations by an application run. We first define the
risk for any OSS or MDS operation x on a file system fs as

riskfs(x) =
x− α · avgfs(x)

α · avgfs(x)

where the averages are over the raw file system statistics and
α is a scaling factor, set to 2 for this analysis. The risk metric
measures the deviation of Lustre operations from the (scaled)
average on a file system. A higher value indicates higher risk
of slowdown to a file system. To simplify the representation for
the user, the risk for metadata and data operations aggregate
various types of operations into one value:

riskoss = riskread kb + riskread ops+

riskwrite kb + riskwrite ops + riskother

riskmds = riskopen + riskclose + riskgetattr + risksetattr+

riskmkdir + riskrmdir + riskmknod + risklink+

riskunlink + riskren + riskgetxattr + risksetxattr+

riskstatfs + risksync + riskcdr + risksdr

Fig. 1: Sample report showing the risk to file system fs2 over
24 hours.

Risks for individual operations are added only if the value is
greater than zero; as any negative risks are ignored since this
would correspond to the situation where the I/O was less than
the average. The total risk on a file system at a given time is
the sum of all application risks.

For some metadata operations, the averages are closer to
zero and this can cause the risk metrics to become very large.
We still want to measure and identify applications that do
exceptional metadata operations like creating thousands of
directories per second. For these metadata operations, we use
β-scaled average of the sum of all metadata operations to
measure risk, where β is usually set to 0.25. Both α and β
are used to set the lower limit for defining the risks and this
can be configured based on experience.

The above metric measures the quantity of I/O operations,
but not the quality. On Lustre, 1 MB aligned accesses are the
optimal size per operation. To define a measure of the quality
reads and writes, we define the following metrics:

read kb ops =
read ops · 1024

read kb
(1)

write kb ops =
write ops · 1024

write kb
(2)

The read or write quality is optimal when (respectively)
read kb ops = 1 or write kb ops = 1. A value of
read kb ops >> 1 or write kb ops >> 1 denotes poor
quality read and writes. The total ops metric on a file system
at a given time is sum of all application ops metric with
riskoss > 0 (ignoring applications with low quantity of I/O).
In general, risk metrics measures the quantity of I/O and ops
metrics measures the quality.

A workflow has been established where Lustre statistics
(collected in the LAPCAT database) and application data (from
PBS) are exported and ingested by LASSi. Daily risk plots
are generated and are available to helpdesk staff. LASSi uses
Spark [16] for data analytics and matplotlib for generating
reports. Custom risk plots and raw Lustre operation data plots
can also be generated manually. Figure 1 shows the risk



Fig. 2: Sample report showing the OSS risk to file system fs2
over 24 hours with applications that are contributing to the
risk.

Fig. 3: Sample report showing the MDS risk to file system fs2
over 24 hours with applications contributing to the risk.

Fig. 4: Sample report showing the read and write quality to
file system fs2 over 24 hours.

metrics for file system fs2 over a sample period of 24 hours.
The oss risk relates to actual data movement operations and
the mds risk to metadata operations, note the significant peak
in the evening.

Figure 2 shows an example of the oss risk metric over 24
hours attributed to the jobs that were running. These plots
allow us to focus on particular applications. We have noticed
a particular class of applications that can be problematic:
task farms as is illustrated from Figure 3. Each individual
application contributes to a significant metadata operation load
from the whole job.

We have also found the read and write quality metrics to be
useful, an example plot of this metric for fs2 over 24 hours is
shown in Figure 4. The reason this is important is that small
reads or writes to Lustre can keep the file system busy for
(presumably) little benefit.

Figure 5 shows the variation in overall risk metric over many
months and clearly there is a variation in workload during this
time with a peak in March for fs2. We observe that fs2 and fs3
generally have higher risk than fs4. For the same period, we
show the quality metrics (Figure 6) and we can see that reads
on fs4 are generally of low quality. This file system has the
most disparate workload and paradoxically we receive very
few complaints over performance in this file system so it is
likely that the user base are not heavily dependent on the file
system performance.

Fig. 5: Risk metric of file system averaged over months.

D. SAFE

SAFE is an integrated service administration and reporting
tool developed and maintained by EPCC [17]. For this work,
it is important to note that SAFE is able to take data feeds
from a wide variety of sources and link them in such a way
that enables reporting across different system aspects.

We have developed a data feed from LASSi into SAFE that
provides the following aggregated I/O metrics on a per job
basis for every job that is run on the ARCHER system:

• Total amount of data read.
• Total amount of data written.
• Total number of read operations.
• Total number of write operations.



Fig. 6: Ops metric of file systems averaged over months.

Once ingested into SAFE, these records can then be linked
to any other aspects of the job to enable different reporting
queries to be performed. For example, we can summarise the
I/O data based on all jobs that belong to a particular research
area (by linking with project metadata linked to the job) or
we can report on I/O associated with a particular application
(by linking with application metadata provided by the Cray
Resource Usage Reporting data feed). We have used the first
of these linkages in the analysis presented below.

We measure the amount of data written and read by each
job in GiB and use this value, along with the job size and the
amount of core hours (core-h) spent in the job to compute a
two-dimensional heatmap that reveals in which categories of
job size and data size the most ARCHER resource is spent.
The core-h correspond directly to cost on ARCHER and so
using this value as the weighting factor for the heatmaps allows
us to assess the relative importance of different I/O patterns.

E. IO-500

The IO-5002 is a benchmark suite that establishes I/O
performance expectations for naive and optimised access; a
single score is derived from the individual measurements
and released publicly in a list to foster the competition.
Similarly to Top500, a list is released on each ISC-HPC and
Supercomputing conference [18].

The design goals for the benchmark were: representative,
understandable, scalable, portable, inclusive, lightweight, and
trustworthy. The IO-500 is built on the standard benchmarks
MDTest and IOR3. The workloads represent:

• IOREasy: Applications with well optimized I/O patterns.
• IORHard: Applications that require a random workload.
• MDEasy: Metadata and small object access in balanced

directories.
• MDHard: Small data access (3901 bytes) of a shared

directory.
• Find: Locating objects based on name, size, and times-

tamp.

2https://github.com/vi4io/io-500-dev
3https://github.com/hpc/ior

The workloads are executed in a script that first performs all
write phases and then the read phases to minimise cache reuse.

a) Performance Probing: To understand the response
times for the IO-500 case further, we run a probe every second
on a node that measures the response time for accessing a
random 1 MB of data in a 200 GB file and for a create, stat,
read, delete of one file in a pool of 200k files. The I/O
test uses the dd tool for access while the metadata test uses
MDWorkbench [19] which allows for such regression testing.
The investigation of the response times enables a fine-grained
investigation of the system behavior and to assess the observed
risk.

III. RESULTS AND ANALYSIS

A. LASSi Application Analysis

In this section we show recent analysis of the application
I/O on ARCHER for the period April 2017 to March 2019
inclusive (i.e. two full years) by characterising them with the
risk and ops metrics.

1) Applications Slowdown Analysis: LASSi was originally
developed to analyse events of slowdown, reported by users. In
the case of a slowdown event, the time window of the event is
mapped to the file system risk and ops profile. This will easily
tell us if I/O is responsible for slowdown and which application
was causing the slowdown. LASSi has historical run time
data of all application runs and user reports of application
slowdown is always validated to check for actual slowdown.

High risk oss usually corresponds to a more than average
quantity of reads and writes. This is generally not concerning
since the shared file systems are configured to deliver high
I/O bandwidth. In such cases, attention should be given more
to the I/O quality as denoted by ops metric. In case of high
MDS risk, the application should be carefully studied for high
metadata operations that contribute to the risk.

In LASSi, applications are grouped by the exact run time
command used. Usually a user reports jobs that ran normally
and which ran slower. Sometimes this detailed information is
not provided. In such cases, LASSi analysis will consider all
jobs in the group for analysis. Slowdown is a function of the
I/O profile of the application and the risk and ops profile of
the file system that the application encounters. For instance,
an application that does not perform I/O will not be impacted
by the risk in the file system. Similarly, application with high
metadata operations will be impacted by the risk mds and
not risk oss.

This slowdown analysis used to take around a day or two
and LASSi has made this process simple and such analysis
are usually done in minutes using the automated daily reports.
Further development is in progress to automatically identify
application slowdown and identify the causes.

2) Applications Usage Analysis: A useful way to view the
risk to the file system from a mix of applications is a scatter
plot showing OSS and MDS risk for a set of applications.
Using the scatter plots, we can identify general trends in file
system usage and identify main issues or usage patterns. This
study of the profile of the risk and ops metrics across file



Fig. 7: Scatter plot of risk oss vs risk mds for applications.

Fig. 8: Scatter plot of risk oss vs risk mds for applications at
high resolution.

system over a long period is helpful for system architects and
service staff to improve operational quality and plan for future.
Even though we can characterize different file systems based
on the metrics, there is usually not a strict direct mapping from
applications to file system. A more interesting analysis is to
study the metrics of each application group. In this section
we will look at the risk and ops profile of application groups
based on their run command.

We use previous experience gained by the site support
team, to map the run command to the application being run.
Figure 7 shows the scatter plot of risk oss vs risk mds for
different application groups. Figure 8 shows the same metric
for applications zoomed in to the bottom-left corner. For
simplicity, 14 application groups are shown and we ignore
applications with (risk oss+risk mds) < 25. The risk oss
and risk mds in the plots refer to the average value of any
application run over its run time.

The first thing to note from Figure 7 is a pattern of risks
mostly clustered around the axis for most applications except
multigulp. The points scattered around the risk oss indicates
application doing more reads and write using lesser metadata

Fig. 9: Scatter plot of risk oss vs risk mds for Atmos,
with color map indicating the I/O quality (read kb ops +
write kb ops).

operations. dissect, atmos and nemo applications follow this
pattern Similarly, the points scattered around the risk mds
indicates application using more metadata operations to com-
plete lesser quantity of reads or writes. This pattern is seen in
iPIC3D, Foam, cp2k, python and mitgcm applications.

The zoomed-in view (in Figure 8) shows a similar pattern of
risks mostly clustered around the axis. We can see clustering of
hydra near both the risk oss and risk mds axis. incompact
and few instances of mdrun application clustered near the
risk mds axis. The ph.x application show no clear pattern
but have many runs with considerable risk oss and risk mds
like the multigulp applications. There are many instances of
task-farm like applications that have smaller risk. The risks
from task-farm get amplified as individual tasks are scheduled
to run in huge numbers at the same time.

3) Application profile: In this section, we will take a more
in depth look at the detailed risk and ops profile of four
application groups. Figures 7 and 8 show the risk profile
of multiple application groups but does not include the I/O
quality (ops profile).

Figures 9, 10, 11 and 12 show the risk and ops profile
of the atmos, python, incompact and iPIC3D applications
respectively. All plots show scatter of risk oss vs risk mds,
with the color map showing the I/O quality (read kb ops +
write kb ops). Blue denotes best I/O quality and red, worse
I/O quality.

The clusters in Figure 9, the atmos applications reveal three
different I/O patterns. Clusters near the axis show good I/O
quality whereas the cluster away from the axis shows poor I/O
quality. Clusters of python applications in Figure 10, show
both high metadata and OSS usage, but in general suffer
from poor I/O quality, whereas some application with low risk
perform good I/O quality.

Most incompact applications in Figure 11 show good I/O
quality whereas a cluster of application runs away from the
axis show very bad I/O quality. Many iPIC3D application are
characterised by high metadata usage and bad I/O quality as



Fig. 10: Scatter plot of risk oss vs risk mds for Python,
with color map indicating the I/O quality (read kb ops +
write kb ops).

Fig. 11: Scatter plot of risk oss vs risk mds for Incompact,
with color map indicating the I/O quality (read kb ops +
write kb ops).

Fig. 12: Scatter plot of risk oss vs risk mds for iPIC3D,
with color map indicating the I/O quality (read kb ops +
write kb ops).

shown in Figure 11. A cluster of iPIC3D application with high
OSS risk have good I/O quality.

We see a general trend in application profiles that there is
variance in both the quantity and I/O quality but they all show
clear trends as seen by the clustering. This clearly points to
different application configurations used by researchers. It is
encouraging to see many application runs showing good I/O
quality and high amounts of I/O. Understanding why different
application runs in the same scientific community have lower
I/O quality or use more metadata operations is important and
we plan to investigate this further in the future.

B. IO-500 Probes and LASSi

To investigate the behavior of the risk for running applica-
tions, we executed the IO-500 benchmark on 100 nodes on
ARCHER. The benchmark reported for the different phases
the following performance values: (IOREasy write: 12.973
GB/s, MDEasy write: 58.312 kiops, IORHard write: 0.046
GB/s, MDHard write: 34.324 kiops, find: 239.300 kiops,
IOREasy read: 9.823 GB/s, MDEasy stat: 64.173 kiops,
IORHard read: 1.880 GB/s, MDHard stat: 63.166 kiops,
MDEasy delete: 13.195 kiops, MDHard read: 20.222 kiops,
MDHard delete: 10.582 kiops) with a total IO-500 score of
8.45.

The observed risk is shown in Figure 13(a). Be aware that
due to the reporting interval, the data points cover the 6 minute
period left of them (i.e. the previous 6 minutes). We can see
that the OSS risk is high during the IOR easy phases, reaching
2000 for the read phase. The value is around 500 during the
MDHard Read phase. The IOHard values cannot be recognized
from the OSS risk.

Looking at the metadata risk, the MD workloads can be
identified; high peaks are seen in the hard workloads towards
the end.

To understand the impact on the user perspective, we also
run the periodic probing and reported the response time in
Figure 13(b) for metadata rates and I/O. The data response
time correlates well with the risk for IOREasy patterns, the
response times are high compared to the risk for the MD hard
write and MD delete. The metadata risk and the metadata
shows some correlation particularly to md.delete, but small
I/O (md.read) is also delayed significantly for some patterns.

This analysis gives us confidence that the LASSi risk met-
rics correspond to real, observable effects on the file systems
studied.

C. SAFE Analysis of LASSi Data

For the SAFE analysis of LASSi data we considered all jobs
that ran on ARCHER in the 6-month period July to December
2018.

1) Overall view: Figures 14 and 15 show I/O heatmaps for
data read, data written, mean read ops/s and mean write ops/s
for all jobs on ARCHER during the analysis period (Jul-Dec
2018 inclusive).

Table I summarises the percentage use by amount of data
read or written per job for the same period.



(a) Risk

(b) Response time as measured by the probing

Fig. 13: Observed behavior of the IO-500 on 100 ARCHER nodes.



Fig. 14: Heatmaps of data read per job and data written per job vs job size. Weights correspond to total core-h spent in a
particular category.

In total, 11,279.4 TiB of data were read and 22,094.3 TiB of
data were read by all jobs on ARCHER during the six month
analysis period.

TABLE I: % usage breakdown by data read and written for
all jobs run on ARCHER during the analysis period.

Total data per job Usage
(GiB) Read Write
(0,4) 59.8% 34.8%

[4, 32) 14.7% 21.5%
[32, 256) 13.4% 17.8%

[256, 2048) 11.1% 21.4%
[2048,) 1.0% 4.5%

The table and heatmaps reveal that a large amount of
resources are consumed by jobs that do not read or write large
amounts of data (less than 4 GiB read/written per job). We can
also see that there are large amounts of use in some categories
with large amounts of data written per job - particularly at 129-
256 nodes with 1-2 TiB written per job and 257-512 nodes
with 0.5-1 TiB written per job. There is a broad range of use
writing from 2 to 512 GiB per job in the job size range from
8 to 512 nodes. We note that the analysis shows that user
jobs on ARCHER generally read less data than they write by
roughly a factor of two.

Figure 15 heatmaps of I/O operations provide less useful
information. As the data ingested into SAFE only contains the
total number of operations over the whole job, the computed
mean I/O rate is generally small and we would expect that it
is the peak rate (in terms of operations per second) that would
be required to provide additional insight. For this reason, we
constrain our remaining analysis of the LASSi data in SAFE

to the total amounts of data read and written per job. We do
plan, in the future, to import the peak ops/s rate into SAFE to
facilitate useful analysis of this aspect of I/O.

As demonstrated by the LASSi application use analysis, the
data for all jobs within the analysis period will be a overlay of
many different I/O use patterns. In order to start to understand
and identify these different use patterns, the following sections
analyse the I/O patterns for different research communities on
ARCHER. In this initial analysis, we consider four different
communities that make up a large proportion of the core hours
used on the service in the analysis period:

• Materials science.
• Climate modelling.
• Computational fluid dynamics (CFD).
• Biomolecular modelling.

Together, these communities typically account for around
60% of the total usage on the ARCHER service. Our initial
analysis has focussed on communities with large amounts of
core-h use in the analysis period as core-h use corresponds
directly to how resources are allocated on the service. Future
analyses will examine use cases which use large amounts of
I/O resource without a corresponding large amount of core-h
use to allow us to distinguish other I/O use patterns.

2) Materials science: Materials science research on
ARCHER is dominated by the use of periodic electronic
structure applications such as VASP, CASTEP, CP2K and
Quantum Espresso. The I/O heatmap for this community can
be seen in Figure 16 and the breakdown of data read and
written in Table II. In the six month analysis period, the
materials science community read a total of 1,219.0 TiB and



Fig. 15: Heatmaps of mean read ops/s per job and mean write ops/s per job vs job size. Weights correspond to total core-h
spent in a particular category.

wrote a total of 3,795.1 TiB. Note that the total disk quota
for this community on the ARCHER Lustre file systems is
244 TiB so much of the data read/written is transient in some
way.

TABLE II: Percent usage breakdown by data read and written
for all jobs run by materials science community on ARCHER
during the analysis period.

Total data per job Usage
(GiB) Read Write
(0,4) 94.3% 55.4%

[4, 32) 4.2% 25.0%
[32, 256) 1.1% 12.3%

[256, 2048) 0.4% 5.1%
[2048,) 0.2% 2.2%

It is obvious that the vast majority of materials science
research on ARCHER does not have large requirements on
reading or writing large amounts of data on a per job basis.
However, due to the large amount of use associated with this
community, they still manage to read and write large amounts
of data in total even though the amount per job is small. In
most cases, for the applications used and research problems
treated by this community this I/O pattern can be understood
as:

• the input data is small: often just a description of the
initial atomic coordinates, basis set specification and a
small number of calculation parameters;

• the output data is also small: including properties of the
modelled system such as energy, final atomic coordinates
and descriptions of the wave function.

Closer inspection of the data shows that there is significant
usage (37.3%) for jobs that write larger amounts of data
([4, 256) GiB). We expect these jobs to correspond mostly to
cases where users are running dynamical simulations where
the time trajectories of properties of the system being modelled
are captured for future analysis.

In the future, we expect the size of systems modelled in this
community to stay largely static and so the I/O requirement
for individual jobs will not increase significantly. However, the
drive to more statistically-demanding sampling of parameter
space in this community will drive an overall increase in I/O
requirements going forwards.

3) Climate modelling: This research is dominated by the
use of applications such as the Met Office Unified Model,
WRF, NEMO and MITgcm. The I/O heatmap for this commu-
nity can be seen in Figure 17 and the breakdown of data read
and written in Table III. The climate modelling community
read a total of 503.5 TiB and wrote a total of 2,404.5 TiB in the
six month analysis period. The disk quota for this community
on the ARCHER Lustre file systems is 541 TiB.

TABLE III: Percent usage breakdown by data read and written
for all jobs run by climate modelling community on ARCHER
during the analysis period.

Total data per job Usage
(GiB) Read Write
(0,4) 30.0% 6.3%

[4, 32) 22.4% 24.0%
[32, 256) 39.8% 21.1%

[256, 2048) 7.8% 46.4%
[2048,) 0.0% 2.2%



Fig. 16: Heatmaps of data read per job and data written per job vs job size for the materials science community. Weights
correspond to total core-h spent in a particular category.

The climate modelling community typically read and write
large amounts of data per job with the largest use in the per-job
read interval [32, 256) GiB and the largest use in the per-job
write interval [256, 2048) GiB. This pattern can be understood
as:

• most jobs read in large amounts of observational data and
model description data;

• most jobs write out time-series trajectories of the model
configuration and computed properties for a number of
snapshots throughout the model run. These trajectories
are archived and used for further analysis.

The size of the output trajectories is intrinsically linked to
the resolution of the model being used for the research and
so we would expect the I/O requirements of individual jobs
from this community to increase as the resolution of models
increases.

4) Computational fluid dynamics (CFD): CFD research
on ARCHER is dominated by the use of applications such
as SBLI, OpenFOAM, Nektar++ and HYDRA. The I/O
heatmap for this community can be seen in Figure 18 and
the breakdown of data read and written in Table IV. The CFD
community read a total of 205.2 TiB and wrote a total of
1,016.7 TiB in the six month analysis period. The disk quota
for this community on the ARCHER Lustre file systems is
352 TiB.

Table IV shows a very similar high-level profile to that for
the climate modelling community (Table III) however, there
is a larger difference in the distribution of usage shown in
Figure 18 when compared to that for the climate modelling
community (Figure 17). The high-level similarity can be
understood due to the similarity in technical setup between

TABLE IV: Percent usage breakdown by data read and written
for all jobs run by CFD community on ARCHER during the
analysis period.

Total data per job Usage
(GiB) Read Write
(0,4) 27.6% 7.7%

[4, 32) 30.7% 19.5%
[32, 256) 32.8% 28.4%

[256, 2048) 8.5% 37.9%
[2048,) 0.4% 8.5%

the two communities: jobs for both communities use grid-
based modelling approaches, need to read in large model
descriptions and write out time-series trajectories with large
amounts of data. The difference in the distribution of use can
be understood due to the wider range of modelling scenarios
used within the CFD community compared to the climate
modelling community. Climate models have a small range of
scales (in terms of length and timescale) when compared to
CFD models, where the systems being studied can range in
size from the tiny (e.g. flow in small blood vessels) to the
very large (e.g. models of full offshore wind farms) and also
encompass many different orders of magnitude of timescales.

Going forwards, we expect the diversity of modelling
scenarios to remain for the general CFD community with,
similarly to the climate modelling community, a corresponding
drive to higher resolution in most use cases leading to an
increase in the I/O requirements on a per job basis.

5) Biomolecular modelling: Biomolecular modelling re-
search on ARCHER is dominated by the use of applications
such as GROMACS, NAMD and Amber. The I/O heatmap for



Fig. 17: Heatmaps of data read per job and data written per job vs job size for the climate modelling community. Weights
correspond to total core-h spent in a particular category.

this community can be seen in Figure 19 and the breakdown of
data read and written in Table V. The biomolecular modelling
community read a total of 1.4 TiB and wrote a total of
197.0 TiB in the six month analysis period. The disk quota
for this community on the ARCHER Lustre file systems is 26
TiB.

TABLE V: Percent usage breakdown by data read and written
for all jobs run by biomolecular modelling community on
ARCHER during the analysis period.

Total data per job Usage
(GiB) Read Write
(0,4) 97.9% 30.5%

[4, 32) 2.1% 34.4%
[32, 256) 0.0% 32.6%

[256, 2048) 0.0% 2.8%
[2048,) 0.0% 0.9%

The overall I/O use profile seen for the biomolecular mod-
elling community differs from those already seen for the other
communities investigated: in particular, jobs in this community
read in small amounts of data (similar to the materials science
community) but write out larger amounts of data (though not
generally as large as the climate modelling and CFD commu-
nities which use grid-based models). In addition, the usage
heatmaps reveal that this community uses smaller individual
jobs than the communities using grid-based models and that
the amount of data written is roughly correlated with job size.
We interpret the I/O use profile in the following way:

• The small amount of data that is read in corresponds
to the small amount of data required to specify the
model system and parameters. In a similar way to jobs
in the materials science community, all that is required

to describe the model system are initial particle positions
and a small number of model parameters.

• The larger amount of data written when compared to the
materials science community is because the majority of
jobs produce trajectories with the model system details
saved at many snapshots throughout the job to be used
for further analysis after the job has finished.

In the future we do not expect the I/O requirements for in-
dividual jobs to change very much (as the size of biomolecular
systems to be studied will not change dramatically); however,
as for the materials science jobs, we expect the overall I/O
requirements to increase as more jobs need to be run to be able
to perform more complex statistical analyses of the systems
being studied.

IV. SUMMARY AND CONCLUSIONS

We have outlined our approach to gaining better understand-
ing of how applications on ARCHER interact with the file
systems using a combination of the Cray LASSi framework
and the EPCC SAFE software. The LASSi framework takes
a risk-based approach to identifying behaviour likely to cause
contention in the file systems. This risk based approach has
not only been successful in analysing all reported incidents
of slowdown but also incidents where a reported slowdown
was not related to I/O but had another cause. LASSi has been
used to deliver faster triage of issues and provide a basis for
further analysis of how different applications are using the file
systems.

LASSi provides automated daily reports that are available
to helpdesk staff. We demonstrated how LASSi provides
holistic I/O analysis by monitoring file system I/O, generating
coarse I/O profile of file systems and application runs along



Fig. 18: Heatmaps of data read per job and data written per job vs job size for the CFD community. Weights correspond to
total core-h spent in a particular category.

with analysis of application slowdown using metrics. This
application-centric, non-invasive, metric-based approach has
been used successfully in studying application I/O patterns
and could be used for better management of file system and
application projects. We have also shown how a file system
probing approach using IO-500 complements the risk-based
approach and validates it. Here, from the user perspective, the
single risk metric provides a good indicator but does not reflect
the observed slowdown in all cases.

SAFE provides a way to combine data and metrics from
LASSi with other data feeds from the ARCHER service
allowing us to understand I/O use patterns by analysing the
I/O use of all jobs on the service in a six month period
broken down by different research communities. The statistics
generated by LASSi have been further analysed to gain an
understanding of how particular application areas use the file
system.

Our analysis of LASSi I/O data linked to other service
data using SAFE allowed us to investigate the overall I/O
use pattern on ARCHER and has revealed four distinct I/O
use patterns associated with four of the largest research
communities on ARCHER:

• Overall: The overall I/O use pattern on ARCHER reveals
the overlay of a range of different patterns with the major
ones described below. Over 50% of the use in the analysis
period was for jobs that read less than 4 GiB and wrote
less than 32 GiB. Overall, twice as much data was written
than was read on ARCHER in the analysis period.

• Materials science: Job I/O use is characterised by small
amounts of data read and written on a per job basis but
overall high amounts of data read and written due to the

very large number of jobs. Approximately three times
as much data was written as was read by the materials
science community.

• Climate modelling: Job I/O use is characterised by large
amounts of data read and written on a per job basis
with a small range of per-job read/write behaviours due
to the natural constraint of size of scenarios modelled.
Approximately five times as much data was written as
was read by the climate modelling community.

• Computational fluid dynamics: Job I/O use is charac-
terised by large amounts of data read and written on a
per job basis with a wide range of per-job read/write
behaviours due to the wide range of sizes of scenarios
modelled. Approximately five times as much data was
written as was read by the CFD community.

• Biomolecular modelling: Job I/O use is characterised by
small amounts of data read and medium amounts of data
written on a per job basis with a wide range of per-job
write behaviours due to the variety of modelling scenar-
ios. Approximately ten times as much data was written
as was read by the biomolecular modelling community.

Based on our analysis, we were also able to qualitatively
predict how the I/O requirements of each of the communities
will change in the future: communities that use grid-based
models (climate modelling, CFD) will see an increase in per-
job I/O requirements as the resolution of the modelling grids
increases; the materials science and biomolecular modelling
would expect to see less change in the per-job I/O requirements
(due to scientific limits on the size of systems to be studied)
but would see an overall increase in I/O requirements as more
sophisticated statistical methods and larger parameter sweeps



Fig. 19: Heatmaps of data read per job and data written per job vs job size for the biomolecular modelling community. Weights
correspond to total core-h spent in a particular category.

require more individual jobs per research programme. Future
national services serving these communities will need to take
these requirements into account in their design and operation.

V. FUTURE DIRECTIONS

We are in the early stages of analysing the data obtained
so far and plan to continue our analysis to learn more about
application requirements for I/O. We expect to find more
situations of applications that do not use the file system in
an optimal way. As we find more incidents of application
slowdown we will refine and augment the metrics used by
LASSi. We also plan to automate detection of application
slowdown so that we do not have to wait for individual incident
reports to allow us to correlate LASSi metrics and actual
incidents on the system.

We found that the current I/O operations metrics imported
into SAFE (total number of I/O ops over the whole job) are not
particularly useful for understanding this aspect of the I/O use
on the system. Importing the peak I/O ops rate (for different
operations) for each job should prove more useful and we
plan to develop this functionality so we can analyse the I/O
operations across the service using the powerful combination
of LASSi and SAFE in the same way as we have been able
to for data volumes.

This initial analysis has looked at I/O patterns for four
of the largest research communities on the UK National
Supercomputing Service, ARCHER (in terms of core-h use
in the analysis period) but this approach neglects research
communities that may have low resource use overall (measured
in core-h) but high or different demands of the I/O resources.
We plan to modify our analysis to reveal which communities
are making different demands of the I/O resources by altering

the weighting factor for the heatmaps produced from core-h
to both data volume read/written and I/O operations.

We are also working to identify other HPC facilities that
routinely collect per-job I/O statistics to allow us to compare
the use patterns on ARCHER and understand how similar (or
different) patterns are for similar communities on different
facilities.

In addition to future research directions, we have the fol-
lowing activities planned to increase the impact and utility of
the I/O data and metrics we are collecting:

• Integrate LASSi into the data collection framework pro-
vided by Cray View for ClusterStor4 so that sites with
this software can take advantage of the alternative view
that LASSi can provide.

• Develop an I/O score chart that can be used as part of
the ARCHER resource request process to give the service
a better way to anticipate future I/O requirements and
improve operational efficiency.

• Develop a machine learning model for application run
time and its I/O to potentially allow the scheduler to
make intelligent decisions on how to schedule different
job types to reduce I/O impact between jobs and on the
wider service.
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