
ARCHER Hardware
Overview and Introduction

Slides contributed by Cray and EPCC

Nodes: The building blocks
The Cray XC30 is a Massively Parallel Processor (MPP)
supercomputer design. It is therefore built from many thousands of
individual nodes.
There are two basic types of nodes in any Cray XC30:
•  Compute nodes

•  These only do user computation and are always referred to as “Compute
nodes”

•  Service/Login nodes
•  These provide all the additional services required for the system to function,

and are given additional names depending on their individual task:
•  Login nodes – allow users to log in and perform interactive tasks
•  PBS Mom nodes – run and managing PBS batch scripts
•  Service Database node (SDB) – holds system configuration information
•  LNET Routers - connect to the external filesystem.

There are usually many more compute than service nodes

Differences between Nodes
Compute nodes

•  These are the nodes on which

production jobs are executed
•  They run Compute Node Linux, a

version of the OS optimised for
running batch workloads

•  They can only be accessed by
submitting jobs through a batch
management system (PBS Pro on
ARCHER)

•  They are exclusive resources that
may only be used by a single user.

•  There are many more compute
nodes in any Cray XC30 than login or
service nodes.

Service/Login Nodes

•  This is the node you access when
you first log in to the system.

•  They run a full version of the CLE
operating system (all libraries and
tools available)

•  They are used for editing files,
compiling code, submitting jobs to the
batch queue and other interactive
tasks.

•  They are shared resources that may
be used concurrently by multiple
users.

•  There may be many service nodes in
any Cray XC30 and can be used for
various system services (login nodes,
IO routers, daemon servers).

Interacting with the system
Users do not log directly into the system. Instead they run
commands via an esLogin server. This server will relay
commands and information via a service node referred to as a
“Gateway node”

Compute
node

Compute
node

LNET
Nodes

Compute
node

Compute
node

Gateway
node

Compute
node

Compute
node

esLogin
node

Lustre
OSS

Lustre
OSS

Cray XC30 Cabinets
Cray Sonnexion

Filesystem

E
xt

er
na

l N
et

w
or

k

Infiniband links

Ethernet

ARCHER Layout
Compute node architecture and topology

Cray XC30 Intel® Xeon® Compute Node
The XC30 Compute node
features:
•  2 x Intel® Xeon®

Sockets/die
•  12 core Ivy Bridge
•  QPI interconnect
•  Forms 2 NUMA nodes

•  8 x 1833MHz DDR3
•  8 GB per Channel
•  64/128 GB total

•  1 x Aries NIC
•  Connects to shared Aries

router and wider network
•  PCI-e 3.0

Cray XC30 Compute Node
NUMA Node 1 NUMA Node 0

Intel®
Xeon®

12 Core die

Aries
Router

Intel®
Xeon®

12 Core die

Aries NIC

32GB 32GB

PCIe 3.0

Aries
Network

QPI

DDR3

Terminology
•  A node corresponds to a single Linux OS

•  on ARCHER, two sockets each with a 12-core CPU
•  all cores on a node see the same shared memory space
•  i.e. maximum extent of an OpenMP shared-memory program

•  Nodes are explicit to the user
•  resources allocated in quanta of nodes
•  use given exclusive access to all cores on a node
•  ARCHER resources requested in multiples of nodes

•  All the following higher levels not explicit to user
•  but may have performance impacts in practice

XC30 Compute Blade

8

Compute
Blade
4 Compute
Nodes

Chassis
Rank 1
Network
16 Compute
Blades
No Cables
64 Compute
Nodes

Group
Rank 2
Network
Passive
Electrical
Network
2 Cabinets
6 Chassis
384 Compute
Nodes

System
Rank 3
Network
Active Optical
Network
8 Groups
3008
Compute
Nodes

ARCHER System Building Blocks

CRAY XC30 DRAGONFLY
TOPOLOGY + ARIES

Cray Aries Features
•  Scalability to > 500,000 X86 Cores

•  Cray users run large jobs – 20-50% of system size is common
•  Many examples of 50K-250K MPI tasks per job
•  Optimized collectives MPI_Allreduce in particular

•  Optimized short transfer mechanism (FMA)
•  Provides global access to memory, used by MPI and PGAS
•  High issue rate for small transfers: 8-64 byte put/get and amo in particular

•  HPC optimized network
•  Small packet size 64-bytes
•  Router bandwidth >> injection bandwidth
•  Adaptive Routing & Dragonfly topology

•  Connectionless design
•  Doesn’t depend on a connection cache for performance
•  Limits the memory required per node

•  Fault tolerant design
•  Link level retry on error
•  Adaptive routing around failed links
•  Network reconfigures automatically (and quickly) if a component fails
•  End to end CRC check with automatic software retry in MPI

Cray XC30 Rank1 Network

1
2

o  Chassis with 16 compute blades
o  128 Sockets
o  Inter-Aries communication over

backplane
o  Per-Packet adaptive Routing

16 Aries connected
by backplane

Cray XC30 Rank-2 Copper Network

4 nodes
connect to a
single Aries

6 backplanes
connected with

copper cables in a 2-
cabinet group:

Active optical
cables interconnect

groups

2 Cabinet
Group

768 Sockets

Cray XC30 Routing
S

D

With adaptive routing
we select between
minimal and non-
minimal paths based
on load

The Cray XC30
Class-2 Group has
sufficient bandwidth to
support full injection
rate for all 384 nodes
with non-minimal
routing

M

Minimal routes
between any two
nodes in a group
are just two hops

Non-minimal route
requires up to four

hops.

R M

M

Cray XC30 Network Overview – Rank-3 Network
•  An all-to-all pattern is wired between the

groups using optical cables (blue
network)

•  Up to 240 ports are available per 2-
cabinet group

•  The global bandwidth can be tuned by
varying the number of optical cables in
the group-to-group connections

Example: An 4-group system is interconnected with 6 optical “bundles”. The “bundles”
can be configured between 20 and 80 cables wide

Group 0 Group 1 Group 2 Group 3

Adaptive Routing over optical network
•  An all-to-all pattern is

wired between the groups

Group 0

Group 1

Group 2

Group 3 Group 4

Assume Minimal
path from Group 0 to
3 becomes
congested

Traffic can “bounce
off” any other
intermediate group

Doubles load on network but
more effectively utilizes full
system bandwidth

Filesystems
•  /home – NFS, not accessible on compute nodes

•  For source code and critical files
•  Backed up
•  > 200 TB total

•  /work – Lustre, accessible on all nodes
•  High-performance parallel filesystem
•  Not backed-up
•  > 4PB total

• RDF – GPFS, not accessible on compute nodes
•  Long term data storage

Filesystems
•  No /tmp on backend nodes

•  GNU Fortran, file OPEN statements with STATUS='SCRATCH‘
•  export GFORTRAN_TMPDIR=/work/[project]/[group]/[username]/tmp

•  Users assigned to projects
•  Filesystems configured around projects:

•  /home/projectcode/projectcode/username
•  /work/projectcode/projectcode/username

•  Group permissions also done per project
•  Possible to access files on group permissions with projects but beyond a

project would need world readable files
•  Sharing data

•  Within projects
•  /work/projectcode/projectcode/shared

•  Between projects
•  /work/projectcode/shared

Summary of ARCHER
•  Each nodes contains 24 Intel IvyBridge cores

•  3008 Compute Nodes connected by Aries network
•  64 GB per node; 1/8th of the nodes (one group) have 128 GB

•  Total of 72,192 cores

•  over 200 TB memory

•  Peak performance of 1.6PF

•  ARCHER is not a Linpack engine, but benchmarked at 1.367 PF
•  #19 in November 2013 top 500 list
•  fastest (known) computer in the UK

•  Expected to provide nearly four times the scientific throughput of its predecessor
HECToR

•  HECToR #49 in top 500 with 0.8 PF

ARCHER Software
Brief Overview

Cray’s Supported Programming Environment
Programming

Languages 	

Fortran

C

C++

I/O Libraries	

NetCDF

HDF5

Optimized Scientific
Libraries

LAPACK

ScaLAPACK

BLAS (libgoto)

Iterative
Refinement

Toolkit

Cray Adaptive
FFTs (CRAFFT)

FFTW

Cray PETSc
 (with CASK)

Cray Trilinos
 (with CASK) Cray developed

Licensed ISV SW
3rd party packaging
Cray added value to 3rd party

3rd Party
Compilers

•  Intel
Composer

GNU	

Compilers

Cray Compiling
Environment

(CCE)

Programming
models

Distributed
Memory
(Cray MPT)
•  MPI
•  SHMEM

PGAS & Global
View
•  UPC (CCE)
•  CAF (CCE)
•  Chapel 	

Shared Memory
•  OpenMP 3.0
•  OpenACC

Python

• CrayPat
•  Cray
Apprentice2

Tools

Environment setup

Debuggers

Modules

Allinea (DDT)

lgdb

Debugging Support
Tools

• Abnormal
Termination
Processing

Performance Analysis

STAT

Scoping Analysis

Reveal

Cray MPI & SHMEM
•  Cray MPI

•  Implementation based on MPICH2 from ANL
•  Includes many improved algorithms and tweaks for Cray hardware

•  Improved algorithms for many collectives
•  Asynchronous progress engine allows overlap of computation and comms
•  Customizable collective buffering when using MPI-IO
•  Optimized Remote Memory Access (one-sided) fully supported including passive RMA

•  Full MPI-2 support with the exception of
•  Dynamic process management (MPI_Comm_spawn)

•  MPI-3 support coming soon

•  Cray SHMEM
•  Fully optimized Cray SHMEM library supported

•  Fully compliant with OpenSHMEM v1.0
•  Cray XC implementation close to the T3E model

Cray Performance Analysis Tools (PAT)
•  From performance measurement to performance analysis

•  Assist the user with application performance analysis and
optimization
•  Help user identify important and meaningful information from

potentially massive data sets
•  Help user identify problem areas instead of just reporting data
•  Bring optimization knowledge to a wider set of users

•  Focus on ease of use and intuitive user interfaces
•  Automatic program instrumentation
•  Automatic analysis

•  Target scalability issues in all areas of tool development

Debuggers on Cray Systems
•  Systems with hundreds of thousands of threads of execution

need a new debugging paradigm
•  Innovative techniques for productivity and scalability

•  Scalable Solutions based on MRNet from University of Wisconsin
•  STAT - Stack Trace Analysis Tool

•  Scalable generation of a single, merged, stack backtrace tree
•  running at 216K back-end processes

•  ATP - Abnormal Termination Processing
•  Scalable analysis of a sick application, delivering a STAT tree and a minimal, comprehensive,

core file set.

•  Support for traditional debugging mechanism
•  Allinea DDT 4.0.1
•  gdb

User administration
• SAFE website used for user administration

•  Same site as for HECToR
•  https://www.hector.ac.uk/safe
•  https://www.archer.ac.uk/safe

• Apply for accounts
• Manage project resources
• Report on usage
• View queries
• Etc….

QUESTIONS?

