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Cray XC30 Intel® Xeon® Compute Node 
The XC30 Compute node 
features: 
•  2 x Intel® Xeon® 

Sockets/die 
•  12 core Ivy Bridge 
•  QPI interconnect 
•  2.7 GHz (3.5 GHz) 
•  Forms 2 NUMA nodes 

•  8 x 1833MHz DDR3 
•  8 GB per Channel 
•  64/128 GB total 

•  1 x Aries NIC 
•  Connects to shared Aries 

router and wider network 
•  PCI-e 3.0 
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Intel® Xeon® Ivybridge 12-core socket/die 
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Intel® Xeon® Ivybridge Core Structure  
•  256 bit AVX 

Instructions (4 
double precision 
floating point) 
•  1 x Add 
•  1 x Multiply 
•  1 x Other 

•  2 Hardware 
threads 
(Hyperthreads) 

•  Peak DP FP per 
node 8FLOPS/
clock 
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Hyper-threading 
• Hyper-threading (or Simultaneous multithreading (SMT)) tries 

to fill these spare slots by mixing instructions from more than 
one thread in the same clock cycle. 

• Requires some replication of hardware 
•  instruction pointer, instruction TLB, register rename logic, etc. 
•  Intel Xeon only requires about 5% extra chip area to support SMT 

•  ...but everything else is shared between threads 
•  functional units, register file, memory system (including caches) 
•  sharing of caches means there is no coherency problem 

•  For most architectures, two or four threads is all that makes 
sense 



Hyper-threading example 

Time"

Two threads on two cores"
Two threads on one SMT core"



More on Hyper-threading 
• How successful is hyper-threading?  

•  depends on the application, and how the 2 threads contend for the 
shared resources. 

•  In practice, gains seem to be limited to around 1.2 to 1.3 times 
speedup over a single thread. 
•  benefits will be limited if both threads are using the same functional units 

(e.g. FPUs) intensively. 

•  For memory intensive code, hyper-threading can cause slow 
down 
•  caches are not thread-aware 
•  when two threads share the same caches, each will cause evictions of 

data belonging to the other thread. 



Hyper-threading example performance 
• XC30  

•  Sandy-bridge (8 cores) 

Effects of Hyper-Threading on the NERSC workload on Edison http://www.nersc.gov/assets/CUG13HTpaper.pdf 

•  NAMD •  VASP 



• GTC •  NWChem 

•  Quantum Espresso 



SIMD Vector Operations 
• Same operation on multiple data items 

•  Wide registers 
•  SIMD needed to approach FLOP peak performance, but your code must 

be capable of vectorisation 

•  x86 SIMD instruction sets:  
•  SSE: register width = 128 Bit  

•   2 double precision floating point operands  
•  AVX: register width = 256 Bit 

•  4 double precision floating point operands  

256 bit"

+"

+"

+"

+"

SIMD 
instruction"

256 bit"

64 bit" +"

Serial 
instruction"

for(i=0;i<N;i++){!

   a[i] = b[i] + c[i]!

}!

do i=1,N!

   a(i) = b(i) + c(i)!

end do!



Intel AVX 
4x double 
 

8x float 
 
32x byte 
 

16x short 
 

4x integer32 
 

2x integer64 

●  +, – , * gives 2x w.r.t. SSE; / and sqrt same performance  



When does the compiler vectorize 
•  What can be vectorized  

•  Only loops 

•  Usually only one loop is vectorizable in loopnest 
•  And most compilers only consider inner loop 

•  Optimising compilers will use vector instructions 
•  Relies on code being vectorizable 
•  Or in a form that the compiler can convert to be vectorizable 

•  Some compilers are better at this than others 

•  Check the compiler output listing and/or assembler listing 
•  Look for packed AVX instructions 



Helping vectorization 
•  Is there a good reason for non-vectorization?  

•  There is an overhead in setting up vectorization; maybe it's not worth it 
•  Could you unroll inner (or outer) loop to provide more work? 

•  Does the loop have dependencies? 
•  information carried between iterations 

•  e.g. counter: total	
  =	
  total	
  +	
  a(i)	
  
•  No: 

•  Tell the compiler that it is safe to vectorize 
•  !dir$ IVDEP or #pragma ivdep directive above loop (CCE, but works with most compilers) 
•  C99: restrict keyword (or compile with -­‐hrestrict=a with CCE) 

•  Yes: 
•  Rewrite code to use algorithm without dependencies, e.g. 

•  promote loop scalars to vectors (single dimension array) 
•  use calculated values (based on loop index) rather than iterated counters, e.g. 

•  Replace:  count	
  =	
  count	
  +	
  2;	
  a(count)	
  =	
  ...	
  
•  By:   a(2*i)	
  =	
  ...	
  

•  move if statements outside the inner loop 
•  may need temporary vectors to do this (otherwise use masking operations) 

•  If you need to do too much extra work to vectorize, may not be worth it. 



Let's consider a non-vectorizable loop 
16.	
  	
  +	
  1-­‐-­‐-­‐-­‐-­‐-­‐-­‐<	
  	
  	
  do	
  j	
  =	
  1,N	
  
17.	
  	
  	
  	
  1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  x	
  =	
  xinit	
  
18.	
  	
  +	
  1	
  r4-­‐-­‐-­‐-­‐<	
  	
  	
  	
  	
  do	
  i	
  =	
  1,N	
  
19.	
  	
  	
  	
  1	
  r4	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  x	
  =	
  x	
  +	
  vexpr(i,j)	
  
20.	
  	
  	
  	
  1	
  r4	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  y(i)	
  =	
  y(i)	
  +	
  x	
  
21.	
  	
  	
  	
  1	
  r4-­‐-­‐-­‐-­‐>	
  	
  	
  	
  	
  end	
  do	
  
22.	
  	
  	
  	
  1-­‐-­‐-­‐-­‐-­‐-­‐-­‐>	
  	
  	
  end	
  do 

ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 16  
  A loop starting at line 16 was not vectorized because a recurrence was found on "y" at line 20. 
ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 18  
  A loop starting at line 18 was unrolled 4 times. 
ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 18  
  A loop starting at line 18 was not vectorized because a recurrence was found on "x" at line 19.    

1.497ms  

For more info, type: 
explain	
  ftn-­‐6254	
  

Look further down for associated messages	
  



Now make a small modification 
38.	
  	
  	
  	
  Vf-­‐-­‐-­‐-­‐-­‐-­‐<	
  	
  	
  do	
  i	
  =	
  1,N	
  
39.	
  	
  	
  	
  Vf	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  x(i)	
  =	
  xinit	
  
40.	
  	
  	
  	
  Vf-­‐-­‐-­‐-­‐-­‐-­‐>	
  	
  	
  end	
  do	
  
41.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
42.	
  	
  	
  	
  ir4-­‐-­‐-­‐-­‐-­‐<	
  	
  	
  do	
  j	
  =	
  1,N	
  
43.	
  	
  	
  	
  ir4	
  if-­‐-­‐<	
  	
  	
  	
  	
  do	
  i	
  =	
  1,N	
  
44.	
  	
  	
  	
  ir4	
  if	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  x(i)	
  =	
  x(i)	
  +	
  vexpr(i,j)	
  
45.	
  	
  	
  	
  ir4	
  if	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  y(i)	
  =	
  y(i)	
  +	
  x(i)	
  
46.	
  	
  	
  	
  ir4	
  if-­‐-­‐>	
  	
  	
  	
  	
  end	
  do	
  
47.	
  	
  	
  	
  ir4-­‐-­‐-­‐-­‐-­‐>	
  	
  	
  end	
  do 

ftn-6007 ftn: SCALAR File = bufpack.F90, Line = 42  

  A loop starting at line 42 was interchanged with the loop starting at line 43. 

ftn-6004 ftn: SCALAR File = bufpack.F90, Line = 43  

  A loop starting at line 43 was fused with the loop starting at line 38. 
ftn-6204 ftn: VECTOR File = bufpack.F90, Line = 38  

  A loop starting at line 38 was vectorized. 

ftn-6208 ftn: VECTOR File = bufpack.F90, Line = 42  

  A loop starting at line 42 was vectorized as part of the loop starting at line 38. 

ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 42  

  A loop starting at line 42 was unrolled 4 times. 

1.089ms  

-37% 

N.B. outer loop 
vectorization here	
  

x promoted to vector: 
•  trade slightly more memory 
•  for better performance 



When does the Cray Compiler vectorize? 
•  The Cray compiler will only vectorize loops 

•  Constant strides are best, indirect addressing is bad 
•  Scatter/gather operations (not implemented in AVX) 

•  Can vectorize across inlined functions 
•  Needs to know loop tripcount (but only at runtime) 

•  do/while loops should be avoided 
•  No recursion allowed 

•  if you have this, consider rewriting the loop 
•  If you can't vectorize the entire loop, consider splitting it 

•  so as much of the loop is vectorized as possible 

•  Always check the compiler output  to see what it did 
•  CCE:  -­‐hlist=a 
•  Intel:  -­‐vec-­‐report[0..5]	
  
•  GNU:  -­‐ftree-­‐vectorizer-­‐verbose=1 
•  or (for the hard core) check the assembler generated 

•  Clues from CrayPAT's HWPC measurements 
•  export	
  PAT_RT_HWPC=13 or 14 # Floating point operations SP,DP 
•  Complicated, but look for ratio of operations/instructions > 1 

•  expect 4 for pure AVX with double precision floats 



Intel TurboBoost 
•  Operating frequency of Processor can change 

•  2.7 GHz base frequency 
•  3.5 GHz maximum frequency 
•  Increments of 0.1 GHz 

•  E5-2697v2 
•  Turbo modes: 3/3/3/3/3/3/3/4/5/6/7/8 
•  6-12 cores active, maximum frequency 3.0 GHz 
•  0.1 GHz increase for each core not active above this 

•  System automatically changes, based on: 
•  Number of active cores 
•  Estimated current consumption 
•  Estimated power consumption 
•  Processor temperature 



Glossary of Cray terminology 
PE/Processing Element 
•  A discrete software process with an individual address space. One PE is 

equivalent  to1 MPI Rank, 1 Coarray Image, 1 UPC Thread, or 1 SHMEM PE 
 

Threads 
•  A logically separate stream of execution inside a parent PE that shares the 

same address space 
 
CPU 
•  The minimum piece of hardware capable of running a PE. It may share some 

or all of its hardware resources with other CPUs 
Equivalent to a single “Intel Hyperthread” 

 
Compute Unit 
•  The individual unit of hardware for processing, may be seen described as a 

“core”. 



Running applications on the Cray XC30:  Some basic examples 

Assuming an XC30 node with 12 core Ivybridge processors 
•  Each node has: 48 CPUs/Hyperthreads and 24 Compute Units/cores 

	
  

•  Launching a basic MPI application: 
•  Job has 1024 total ranks/PEs, using 1 CPU per Compute Unit meaning a maximum of 24 

PEs per node. 
	
   	
  #PBS	
  -­‐l	
  select=43	
  
	
   	
  $	
  aprun	
  –n	
  1024	
  –N	
  24	
  –j1	
  ./a.out	
  

	
  

•  To launch the same MPI application but spread over twice as many nodes 
 #PBS	
  -­‐l	
  select=86 

	
   	
  $	
  aprun	
  –n	
  1024	
  –N	
  12	
  –j1	
  ./a.out	
  
•  Can be used to increase the available memory for each PE 

 
•  To use all availble CPUs on a single node  

•   (maximum now 48 PEs per node) 
	
  #PBS	
  -­‐l	
  select=22 

	
   	
  $	
  aprun	
  –n	
  1024	
  –N	
  48	
  –j2	
  ./a.out 



Default Binding - CPU 
• By default aprun will bind each PE to a single CPU for the 

duration of the run. 
•  This prevents PEs moving between CPUs. 
• All child processes of the PE are bound to the same CPU 
• PEs are assigned to CPUs on the node in increasing order 

from 0. e.g. 	
  

aprun	
  –n	
  48	
  –N	
  24	
  –j1	
  a.out	
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NUMA nodes and CPU binding (pt 1) 
•  Care has to be taken when under-populating node (running fewer PEs 

than available CPUs). E.g. 

•  The default binding will bind all PEs to CPUs in the first NUMA node of 
each node. 

•  This will unnecessarily push all memory traffic through only one die’s 
memory controller. Artificially limiting memory bandwidth. 

aprun	
  –n	
  24	
  –N	
  12	
  –j1	
  a.out	
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NUMA nodes and CPU binding (pt 2) 
•  The -­‐S	
  <PEs>	
  flag tells aprun to distribute that many PEs to each 

NUMA node, thus evening the load. 

 
•  PEs will be assigned to CPUs in the NUMA node in the standard 

order, e.g. 0-5 & 12-17. However all CPUs within a NUMA node are 
essentially identical so there are no additional imbalance problems. 

aprun	
  –n	
  24	
  –N	
  12	
  –S	
  6	
  –j1	
  a.out	
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Strict Memory Containment 
•  Each XC30 node is an shared 

memory device.  
•  By default all memory is placed 

on the NUMA node of the first 
CPU to “touch” it. 

•  However, it may be beneficial to 
setup strict memory 
containment between NUMA 
nodes. 

•  This prevents PEs from one 
NUMA node allocating memory 
on another NUMA node. 

•  This has been shown to 
improve performance in some 
applications. 

aprun	
  –ss	
  –n	
  48	
  –N	
  12\	
  
	
  	
  	
  	
  	
  	
  –S	
  6	
  a.out	
  

Cray XC30 Compute Node 

NUMA Node 1 NUMA Node 0 

Intel® Xeon® 
12 Core die 

Intel® Xeon® 
12 Core die 

Aries NIC 

32GB  32GB 

PCIe 3.0 

QPI 

DDR3 

X 



Ignore Hyperthreads “-j1” Single Stream Mode 
All examples up to now have assumed “-­‐j1” or “Single Stream Mode”. 
In this mode, aprun binds PEs and ranks to the 24 Compute Units  (e.g. 
only use CPUs 0-23) 

24 25 26 27 28 29 30 31 
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Include Hyperthreads “-j2” Dual Stream Mode 
Specifying “-­‐j2” in aprun assigns PEs to all of the 48 CPUs available. However 
CPUs that share a common Compute Unit are assigned consecutively 
 
 
 
 
 
 
 
 
 
 
 
This means threads will share Compute Units with default binding 

24 25 26 27 28 29 30 31 

0 1 2 3 4 5 6 7 

NUMA Node 0 

32 

8 

33 

9 

34 

10 

35 

11 

36 37 38 39 40 41 42 43 

12 13 14 15 16 17 18 19 

NUMA Node 1 

44 

20 

45 

21 

46 

22 

47 

23 

 Hyperthread 
pair / 

Compute 
Unit 



Summary 
•  ARCHER Nodes 

•  2 x 12-core Intel Xeon Ivy-Bridge processors 
•  64 GB Memory 

•  General multi-core issues same as any other general HPC 
system around at the moment 

•  Hyperthreading is supported and may increase performance 
•  But may not, so watch this space or try for yourselves 

•  On core vectorisation (AVX) needed for maximum performance 
•  Generally compiler will do this but… 
•  …can help the compiler and check what it’s doing 

•  Controlling process binding can be beneficial 
•  Generally, plain MPI jobs easy, but other things can be achieved 


