
ARCHER Processors

Slides contributed from Cray and EPCC

Cray XC30 Intel® Xeon® Compute Node
The XC30 Compute node
features:
•  2 x Intel® Xeon®

Sockets/die
•  12 core Ivy Bridge
•  QPI interconnect
•  2.7 GHz (3.5 GHz)
•  Forms 2 NUMA nodes

•  8 x 1833MHz DDR3
•  8 GB per Channel
•  64/128 GB total

•  1 x Aries NIC
•  Connects to shared Aries

router and wider network
•  PCI-e 3.0

Cray XC30 Compute Node
NUMA Node 1 NUMA Node 0

Intel®
Xeon®

12 Core die

Aries
Router

Intel®
Xeon®

12 Core die

Aries NIC

32GB 32GB

PCIe 3.0

Aries
Network

QPI

DDR3

Intel® Xeon® Ivybridge 12-core socket/die

DDR3 Memory Controller

Core

Core

Core

Core

Core

Core

Shared
L3 Cache

Core

Core

Core

Core

Core

Core

QPI PCIe-3.0 System

8GB 8GB 8GB 8GB

Socket/die

Quick Path
Interconnect

(inter die)

External I/O
(Aries)

Ring bus

4 x 1866 MHz
DDR3 Channels

Intel® Xeon® Ivybridge Core Structure
•  256 bit AVX

Instructions (4
double precision
floating point)
•  1 x Add
•  1 x Multiply
•  1 x Other

•  2 Hardware
threads
(Hyperthreads)

•  Peak DP FP per
node 8FLOPS/
clock

Core

32KB D1(8-Way)

32KB I1 (8-Way)

25
6K

B
 L

2
(8

-W
ay

)
Fetch

Decode

Scheduler

LSU LSU ALU ALU ALU

AVX
Add

AVX
Mul

AVX
Shuf 30

M
B

 S
ha

re
d

L3
 (1

6-
W

ay
)

Hyper-threading
• Hyper-threading (or Simultaneous multithreading (SMT)) tries

to fill these spare slots by mixing instructions from more than
one thread in the same clock cycle.

• Requires some replication of hardware
•  instruction pointer, instruction TLB, register rename logic, etc.
•  Intel Xeon only requires about 5% extra chip area to support SMT

•  ...but everything else is shared between threads
•  functional units, register file, memory system (including caches)
•  sharing of caches means there is no coherency problem

•  For most architectures, two or four threads is all that makes
sense

Hyper-threading example

Time"

Two threads on two cores"
Two threads on one SMT core"

More on Hyper-threading
• How successful is hyper-threading?

•  depends on the application, and how the 2 threads contend for the
shared resources.

•  In practice, gains seem to be limited to around 1.2 to 1.3 times
speedup over a single thread.
•  benefits will be limited if both threads are using the same functional units

(e.g. FPUs) intensively.

•  For memory intensive code, hyper-threading can cause slow
down
•  caches are not thread-aware
•  when two threads share the same caches, each will cause evictions of

data belonging to the other thread.

Hyper-threading example performance
• XC30

•  Sandy-bridge (8 cores)

Effects of Hyper-Threading on the NERSC workload on Edison http://www.nersc.gov/assets/CUG13HTpaper.pdf

•  NAMD •  VASP

• GTC •  NWChem

•  Quantum Espresso

SIMD Vector Operations
• Same operation on multiple data items

•  Wide registers
•  SIMD needed to approach FLOP peak performance, but your code must

be capable of vectorisation

•  x86 SIMD instruction sets:
•  SSE: register width = 128 Bit

•  2 double precision floating point operands
•  AVX: register width = 256 Bit

•  4 double precision floating point operands

256 bit"

+"

+"

+"

+"

SIMD
instruction"

256 bit"

64 bit" +"

Serial
instruction"

for(i=0;i<N;i++){!

 a[i] = b[i] + c[i]!

}!

do i=1,N!

 a(i) = b(i) + c(i)!

end do!

Intel AVX
4x double

8x float

32x byte

16x short

4x integer32

2x integer64

●  +, – , * gives 2x w.r.t. SSE; / and sqrt same performance

When does the compiler vectorize
•  What can be vectorized

•  Only loops

•  Usually only one loop is vectorizable in loopnest
•  And most compilers only consider inner loop

•  Optimising compilers will use vector instructions
•  Relies on code being vectorizable
•  Or in a form that the compiler can convert to be vectorizable

•  Some compilers are better at this than others

•  Check the compiler output listing and/or assembler listing
•  Look for packed AVX instructions

Helping vectorization
•  Is there a good reason for non-vectorization?

•  There is an overhead in setting up vectorization; maybe it's not worth it
•  Could you unroll inner (or outer) loop to provide more work?

•  Does the loop have dependencies?
•  information carried between iterations

•  e.g. counter: total	
 =	
 total	
 +	
 a(i)	

•  No:

•  Tell the compiler that it is safe to vectorize
•  !dir$ IVDEP or #pragma ivdep directive above loop (CCE, but works with most compilers)
•  C99: restrict keyword (or compile with -­‐hrestrict=a with CCE)

•  Yes:
•  Rewrite code to use algorithm without dependencies, e.g.

•  promote loop scalars to vectors (single dimension array)
•  use calculated values (based on loop index) rather than iterated counters, e.g.

•  Replace: count	
 =	
 count	
 +	
 2;	
 a(count)	
 =	
 ...	

•  By: a(2*i)	
 =	
 ...	

•  move if statements outside the inner loop
•  may need temporary vectors to do this (otherwise use masking operations)

•  If you need to do too much extra work to vectorize, may not be worth it.

Let's consider a non-vectorizable loop
16.	
 	
 +	
 1-­‐-­‐-­‐-­‐-­‐-­‐-­‐<	
 	
 	
 do	
 j	
 =	
 1,N	

17.	
 	
 	
 	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 x	
 =	
 xinit	

18.	
 	
 +	
 1	
 r4-­‐-­‐-­‐-­‐<	
 	
 	
 	
 	
 do	
 i	
 =	
 1,N	

19.	
 	
 	
 	
 1	
 r4	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 x	
 =	
 x	
 +	
 vexpr(i,j)	

20.	
 	
 	
 	
 1	
 r4	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 y(i)	
 =	
 y(i)	
 +	
 x	

21.	
 	
 	
 	
 1	
 r4-­‐-­‐-­‐-­‐>	
 	
 	
 	
 	
 end	
 do	

22.	
 	
 	
 	
 1-­‐-­‐-­‐-­‐-­‐-­‐-­‐>	
 	
 	
 end	
 do

ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 16
 A loop starting at line 16 was not vectorized because a recurrence was found on "y" at line 20.
ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 18
 A loop starting at line 18 was unrolled 4 times.
ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 18
 A loop starting at line 18 was not vectorized because a recurrence was found on "x" at line 19.

1.497ms

For more info, type:
explain	
 ftn-­‐6254	

Look further down for associated messages	

Now make a small modification
38.	
 	
 	
 	
 Vf-­‐-­‐-­‐-­‐-­‐-­‐<	
 	
 	
 do	
 i	
 =	
 1,N	

39.	
 	
 	
 	
 Vf	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 x(i)	
 =	
 xinit	

40.	
 	
 	
 	
 Vf-­‐-­‐-­‐-­‐-­‐-­‐>	
 	
 	
 end	
 do	

41.	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

42.	
 	
 	
 	
 ir4-­‐-­‐-­‐-­‐-­‐<	
 	
 	
 do	
 j	
 =	
 1,N	

43.	
 	
 	
 	
 ir4	
 if-­‐-­‐<	
 	
 	
 	
 	
 do	
 i	
 =	
 1,N	

44.	
 	
 	
 	
 ir4	
 if	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 x(i)	
 =	
 x(i)	
 +	
 vexpr(i,j)	

45.	
 	
 	
 	
 ir4	
 if	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 y(i)	
 =	
 y(i)	
 +	
 x(i)	

46.	
 	
 	
 	
 ir4	
 if-­‐-­‐>	
 	
 	
 	
 	
 end	
 do	

47.	
 	
 	
 	
 ir4-­‐-­‐-­‐-­‐-­‐>	
 	
 	
 end	
 do

ftn-6007 ftn: SCALAR File = bufpack.F90, Line = 42

 A loop starting at line 42 was interchanged with the loop starting at line 43.

ftn-6004 ftn: SCALAR File = bufpack.F90, Line = 43

 A loop starting at line 43 was fused with the loop starting at line 38.
ftn-6204 ftn: VECTOR File = bufpack.F90, Line = 38

 A loop starting at line 38 was vectorized.

ftn-6208 ftn: VECTOR File = bufpack.F90, Line = 42

 A loop starting at line 42 was vectorized as part of the loop starting at line 38.

ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 42

 A loop starting at line 42 was unrolled 4 times.

1.089ms

-37%

N.B. outer loop
vectorization here	

x promoted to vector:
•  trade slightly more memory
•  for better performance

When does the Cray Compiler vectorize?
•  The Cray compiler will only vectorize loops

•  Constant strides are best, indirect addressing is bad
•  Scatter/gather operations (not implemented in AVX)

•  Can vectorize across inlined functions
•  Needs to know loop tripcount (but only at runtime)

•  do/while loops should be avoided
•  No recursion allowed

•  if you have this, consider rewriting the loop
•  If you can't vectorize the entire loop, consider splitting it

•  so as much of the loop is vectorized as possible

•  Always check the compiler output to see what it did
•  CCE: -­‐hlist=a
•  Intel: -­‐vec-­‐report[0..5]	

•  GNU: -­‐ftree-­‐vectorizer-­‐verbose=1
•  or (for the hard core) check the assembler generated

•  Clues from CrayPAT's HWPC measurements
•  export	
 PAT_RT_HWPC=13 or 14 # Floating point operations SP,DP
•  Complicated, but look for ratio of operations/instructions > 1

•  expect 4 for pure AVX with double precision floats

Intel TurboBoost
•  Operating frequency of Processor can change

•  2.7 GHz base frequency
•  3.5 GHz maximum frequency
•  Increments of 0.1 GHz

•  E5-2697v2
•  Turbo modes: 3/3/3/3/3/3/3/4/5/6/7/8
•  6-12 cores active, maximum frequency 3.0 GHz
•  0.1 GHz increase for each core not active above this

•  System automatically changes, based on:
•  Number of active cores
•  Estimated current consumption
•  Estimated power consumption
•  Processor temperature

Glossary of Cray terminology
PE/Processing Element
•  A discrete software process with an individual address space. One PE is

equivalent to1 MPI Rank, 1 Coarray Image, 1 UPC Thread, or 1 SHMEM PE

Threads
•  A logically separate stream of execution inside a parent PE that shares the

same address space

CPU
•  The minimum piece of hardware capable of running a PE. It may share some

or all of its hardware resources with other CPUs
Equivalent to a single “Intel Hyperthread”

Compute Unit
•  The individual unit of hardware for processing, may be seen described as a

“core”.

Running applications on the Cray XC30: Some basic examples

Assuming an XC30 node with 12 core Ivybridge processors
•  Each node has: 48 CPUs/Hyperthreads and 24 Compute Units/cores

	

•  Launching a basic MPI application:
•  Job has 1024 total ranks/PEs, using 1 CPU per Compute Unit meaning a maximum of 24

PEs per node.
	
 	
 #PBS	
 -­‐l	
 select=43	

	
 	
 $	
 aprun	
 –n	
 1024	
 –N	
 24	
 –j1	
 ./a.out	

	

•  To launch the same MPI application but spread over twice as many nodes
 #PBS	
 -­‐l	
 select=86

	
 	
 $	
 aprun	
 –n	
 1024	
 –N	
 12	
 –j1	
 ./a.out	

•  Can be used to increase the available memory for each PE

•  To use all availble CPUs on a single node

•  (maximum now 48 PEs per node)
	
 #PBS	
 -­‐l	
 select=22

	
 	
 $	
 aprun	
 –n	
 1024	
 –N	
 48	
 –j2	
 ./a.out

Default Binding - CPU
• By default aprun will bind each PE to a single CPU for the

duration of the run.
•  This prevents PEs moving between CPUs.
• All child processes of the PE are bound to the same CPU
• PEs are assigned to CPUs on the node in increasing order

from 0. e.g. 	

aprun	
 –n	
 48	
 –N	
 24	
 –j1	
 a.out	

0

0

1

1

2

2

23

23 …

0

24

1

25

2

26

23

47 …

Node 1 Node 0

1 Software PE
is bound to

1 Hardware CPU

NUMA nodes and CPU binding (pt 1)
•  Care has to be taken when under-populating node (running fewer PEs

than available CPUs). E.g.

•  The default binding will bind all PEs to CPUs in the first NUMA node of
each node.

•  This will unnecessarily push all memory traffic through only one die’s
memory controller. Artificially limiting memory bandwidth.

aprun	
 –n	
 24	
 –N	
 12	
 –j1	
 a.out	

0

0

11

…

Node 0

11

NUMA Node 0

12 23

…

NUMA Node 1

0

12

11

…

Node 1

23

NUMA Node 0

12 23

…

NUMA Node 1

NUMA nodes and CPU binding (pt 2)
•  The -­‐S	
 <PEs>	
 flag tells aprun to distribute that many PEs to each

NUMA node, thus evening the load.

•  PEs will be assigned to CPUs in the NUMA node in the standard

order, e.g. 0-5 & 12-17. However all CPUs within a NUMA node are
essentially identical so there are no additional imbalance problems.

aprun	
 –n	
 24	
 –N	
 12	
 –S	
 6	
 –j1	
 a.out	

0

0

11

…

Node 0
NUMA Node 0

12 23

…

NUMA Node 1

0

12

11

…

Node 1
NUMA Node 0

12 23

…

NUMA Node 1

6 18

Strict Memory Containment
•  Each XC30 node is an shared

memory device.
•  By default all memory is placed

on the NUMA node of the first
CPU to “touch” it.

•  However, it may be beneficial to
setup strict memory
containment between NUMA
nodes.

•  This prevents PEs from one
NUMA node allocating memory
on another NUMA node.

•  This has been shown to
improve performance in some
applications.

aprun	
 –ss	
 –n	
 48	
 –N	
 12\	

	
 	
 	
 	
 	
 	
 –S	
 6	
 a.out	

Cray XC30 Compute Node

NUMA Node 1 NUMA Node 0

Intel® Xeon®
12 Core die

Intel® Xeon®
12 Core die

Aries NIC

32GB 32GB

PCIe 3.0

QPI

DDR3

X

Ignore Hyperthreads “-j1” Single Stream Mode
All examples up to now have assumed “-­‐j1” or “Single Stream Mode”.
In this mode, aprun binds PEs and ranks to the 24 Compute Units (e.g.
only use CPUs 0-23)

24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7

NUMA Node 0

CPUs 24-47
Ignored

 Hyperthread
pair /

Compute
Unit

32

8

33

9

34

10

35

11

36 37 38 39 40 41 42 43

12 13 14 15 16 17 18 19

NUMA Node 1

44

20

45

21

46

22

47

23

Include Hyperthreads “-j2” Dual Stream Mode
Specifying “-­‐j2” in aprun assigns PEs to all of the 48 CPUs available. However
CPUs that share a common Compute Unit are assigned consecutively

This means threads will share Compute Units with default binding

24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7

NUMA Node 0

32

8

33

9

34

10

35

11

36 37 38 39 40 41 42 43

12 13 14 15 16 17 18 19

NUMA Node 1

44

20

45

21

46

22

47

23

 Hyperthread
pair /

Compute
Unit

Summary
•  ARCHER Nodes

•  2 x 12-core Intel Xeon Ivy-Bridge processors
•  64 GB Memory

•  General multi-core issues same as any other general HPC
system around at the moment

•  Hyperthreading is supported and may increase performance
•  But may not, so watch this space or try for yourselves

•  On core vectorisation (AVX) needed for maximum performance
•  Generally compiler will do this but…
•  …can help the compiler and check what it’s doing

•  Controlling process binding can be beneficial
•  Generally, plain MPI jobs easy, but other things can be achieved

