
ARCHER MPI LIBRARY

Slides contributed by Cray and EPCC

Architectural features of XC30
• Many levels of “closeness” between physical cores

•  leads to many levels of closeness between user proceses
•  e.g. many levels of “closeness” between MPI sender and receiver

• A reminder of what they are ….

Cray XC30 Intel® Xeon® Compute Node
The XC30 Compute node
features:
•  2 x Intel® Xeon®

Sockets/die
•  12 core Ivy Bridge
•  QPI interconnect
•  Forms 2 NUMA nodes

•  8 x 1833MHz DDR3
•  8 GB per Channel
•  64/128 GB total

•  1 x Aries NIC
•  Connects to shared Aries

router and wider network
•  PCI-e 3.0

Cray XC30 Compute Node
NUMA Node 1 NUMA Node 0

Intel®
Xeon®

12 Core die

Aries
Router

Intel®
Xeon®

12 Core die

Aries NIC

32GB 32GB

PCIe 3.0

Aries
Network

QPI

DDR3

XC30 Compute Blade

4

Compute
Blade
4 Compute
Nodes

Chassis
Rank 1
Network
16 Compute
Blades
No Cables
64 Compute
Nodes

Group
Rank 2
Network
Passive
Electrical
Network
2 Cabinets
6 Chassis
384 Compute
Nodes

System
Rank 3
Network
Active Optical
Network
8 Groups
3008
Compute
Nodes

ARCHER System Building Blocks

Architectural features relevant to MPI
•  In principle expect hierarchy of MPI performance between

1)  two hyperthreads on the same core
2)  two cores on the same NUMA region but different cores
3)  two cores on the same node but different NUMA regions
4)  two cores on the same blade but different nodes
5)  two cores on the same chassis but different blades
6)  two cores on the same group but different chassis
7)  two cores in different groups

•  In practice levels 4 – 7 are basically the same

•  As for HECToR, only really care if comms is on-node or off-node

MPICH2 and Cray MPT
• Cray MPI uses MPICH2 distribution from Argonne

•  Provides a good, robust and feature rich MPI
•  Cray provides enhancements on top of this:

•  low level communication libraries
•  Point to point tuning
•  Collective tuning
•  Shared memory device is built on top of Cray XPMEM

• Many layers are straight from MPICH2
•  Error messages can be from MPICH2 or Cray Libraries.

Rank A

Overlapping Communication and Computation

Compute

MPI_ISend

Compute Ti
m

e

MPI_Waitall

MPI_IRecv

Compute

Rank B

Compute

MPI_ISend

Compute

MPI_Waitall

MPI_IRecv

Compute

Data
Transferred

in
Background

The MPI API provides many
functions that allow point-to-
point messages (and with
MPI-3, collectives) to be
performed asynchronously.

Ideally applications would be
able to overlap communication
and computation, hiding all data
transfer behind useful
computation.

Unfortunately this is not
always possible at the

application and not always
possible at the

implementation level.

What prevents Overlap?
•  Even though the library has asynchronous API calls, overlap of

computation and communication is not always possible

•  This is usually because the sending process does not know where to
put messages on the destination as this is part of the MPI_Recv, not
MPI_Send.

•  Also on Gemini and Aries, complex tasks like matching message tags
with the sender and receiver are performed by the host CPU. This
means:

+ Gemini and Aries chips can have higher clock speed and so lower latency and
better bandwidth
+ Message matching is always performed by one fast CPU per rank.
- Messages can usually only be “progressed” when the program is inside an MPI
function or subroutine.

Receiver Sender

EAGER Messaging – Buffering Small Messages

MPI_Send

Compute

Compute

MPI_Recv

Compute

MPI
Buffers

Ti
m

e

Smaller messages can avoid
this problem using the eager
protocol.

If the sender does not know
where to put a message it can
be buffered until the sender is
ready to take it.

When MPI Recv is called the
library fetches the message
data from the remote buffer and
into the appropriate location (or
potentially local buffer)

Sender can proceed as soon as
data has been copied to the
buffer.

Sender will block if there are no
free buffers

Data
pushed to
receiver’s

buffer

MPI
Buffers

Rank A

EAGER potentially allows overlapping

Compute

MPI_ISend

Compute Ti
m

e

MPI_Waitall

MPI_IRecv

Compute

Rank B

Compute

MPI_ISend

Compute

MPI_Waitall

MPI_IRecv

Compute

Data is pushed into an empty
buffer(s) on the remote
processor.

Data is copied from the buffer
into the real receive destination
when the wait or waitall is
called.

Involves an extra memcopy, but
much greater opportunity for
overlap of computation and
communication.

Receiver Sender

RENDEZVOUS Messaging – Larger Messages

MPI_Send

Compute

Compute

MPI_Recv

Compute

DATA MPI
Buffers

Ti
m

e

Larger messages (that are
too big to fit in the buffers)
are sent via the rendezvous
protocol

Messages cannot begin
transfer until MPI_Recv
called by the receiver.

Data is pulled from the
sender by the receiver.

Sender must wait for data to
be copied to receiver before
continuing.

Sender and Receiver block
until communication is
finished

DATA

DATA

Data pulled
from the
sender

Rank A

RENDEZVOUS does not usually overlap

Compute

MPI_ISend

Compute Ti
m

e

MPI_Waitall

MPI_IRecv

Rank B

Compute

MPI_ISend

Compute

MPI_Waitall

MPI_IRecv

With rendezvous data transfer
often only occurs during the
Wait or Waitall statement.

When the message arrives at
the destination, the host CPU is
busy doing computation, so is
unable to do any message
matching.

Control only returns to the
library when MPI_Waitall occurs
and does not return until all
data is transferred.

There has been no overlap of
computation and
communication.

DATA DATA

DATA DATA

Making more messages EAGER
•  One way to improve performance is to send more messages

using the eager protocol.

•  This can be done by raising the value of the eager threshold,
by setting environment variable:
export	
 MPICH_GNI_MAX_EAGER_MSG_SIZE=X	

•  Values are in bytes, the default is 8192 bytes. Maximum size is
131072 bytes (128KB).

•  Try to post MPI_IRecv calls before the MPI_ISend call to avoid
unnecessary buffer copies.

Consequences of more EAGER messages

•  Sending more messages via EAGER places more demands on
buffers on receiver.

•  If the buffers are full, transfer will wait until space is available or
until the Wait.

•  Buffer size can be increased using:
export	
 MPICH_GNI_NUM_BUFS=X	

•  Buffers are 32KB each and default number is 64 (total of 2MB).

•  Buffer memory space is competing with application memory, so
we recommend only moderate increases.

