Parallel Programming

Overview and Concepts

Dr Mark Bull, EPCC
markb@epcc.ed.ac.uk ‘epCC‘ Y-




Outline

- Why use parallel programming?

- Parallel models for HPC
- Shared memory (thread-based)

- Message-passing (process-based)
- Other models

- Assessing parallel performance: scaling
- Strong scaling
- Weak scaling

- Limits to parallelism

- Amdahl’s Law
- Gustafson’s Law

epCe




Why use parallel programming?

It is harder than serial so why bother?

NI1VE

< p '?d“,

e CC | : -
~ ! -
o -~ T

< ;04‘ $(_:,

P 5
DN




Drivers for parallel programming

- Traditionally, the driver for parallel programming was that
a single core alone could not provide the time-to-solution
required for complex simulations
- Multiple cores were tied together as a HPC machine
- This is the origin of HPC and explains the symbiosis of HPC and

parallel programming

- Recently, due to the physical limits on the increase in
power of single cores, the driver is due to the fact that all
modern processors are parallel

- In effect, parallel programming is required for all computing, not just
HPC

epCce




Focus on HPC

In HPC, the driver is the same as always
Need to run complex simulations with a reasonable time to solution

Single core or even single/multiple processors in a workstation do
not provide the compute/memory/IO performance required

Solution is to harness the power of multiple cores/
memory/storage simultaneously

In order to do this we require concepts to allow us to
exploit the resources in a parallel manner
Hence, parallel programming

Over time a number of different parallel programming

models have emerged.
epCcc




Parallel models

How can we write parallel programs

NI1VE
o O
e CC i ) -
IS Yh -
o e z
‘ | R
COTREY




Shared-memory programming

- Shared memory programming is usually based on threads

- Although some hardware/software allows processes to be
programmed as if they share memory

- Sometimes known as Symmetric Multi-processing (SMP) although
this term is now a little old-fashioned

- Most often used for Data Parallelism

- Each thread operates the same set of instructions on a separate
portion of the data

- More difficult to use for Task Parallelism
- Each thread performs a different set of instructions

epCe




Shared-memory concepts

- Threads “communicate” by having access to the same
memory space
- Any thread can alter any bit of data
- No explicit communications between the parallel tasks

Po

Po(To) I Po(T1)
4 4

1 epcc




Advantages and disadvantages

- Advantages:
- Conceptually simple
- Usually minor modifications to existing code
- Often very portable to different architectures

- Disadvantages
- Difficult to implement task-based parallelism — lack of flexibility
- Often does not scale very well

- Requires a large amount of inherent data parallelism (e.g. large
arrays) to be effective

- Can be surprisingly difficult to get good performance

epCe




Message-passing programming

- Message passing programming Is process-based
- Processes running simultaneously communicate by

exchanging messages

- Messages can be 2-sided — both sender and receiver are involved
in the process

- Or they can be 1-sided — only the sender or receiver is involved

- Used for both data and task parallelism

- In fact, most message passing programs employ a mixture of data
and task parallelism

epCe




Message-passing concepts

- Each process does not have access to another process’s
memory

- Communication is usually explicit

v v v \ 4 ‘epCC

Q/ NN/
< )\
= ¥4 -
o]
<




Advantages and disadvantages

- Advantages:

- Flexible — almost any parallel algorithm imaginable can be
implemented

- Scaling usually only limited by your choice of algorithm
- Portable — MPI library is provided on all HPC platforms

- Disadvantages

- Parallel routines usually become part of the program due to explicit
nature of communications

- Can be a large task to retrofit into existing code
- May not give optimum performance on shared-memory machines
- Can be difficult to scale to very large numbers of processes

(>100,000) due to overheads
epCcc




Scaling

Assessing parallel performance

N1V
S
e CC {isd i
= | -
NN
o s

IND




Scaling

Scaling is how the performance of a parallel application
changes as the number of parallel processes/threads is

Increased

There are two different types of scaling:

Strong Scaling — total problem size stays the same as the number
of parallel elements increases

Weak Scaling — the problem size increases at the same rate as the
number of parallel elements, keeping the amount of work per
element the same

Strong scaling is generally more useful and more difficult
to achieve than weak scaling

epCce




Limits to parallel performance

How much can you gain from parallelism

\)N 1VE
J '?J‘,
e CC | : -
~ ! -
o -~ T
< ;04‘ $(_:,
P 5
DN




Performance improvement

- Two theoretical descriptions of the limits to parallel
performance improvement are useful to consider:

- Amdahl’s Law — how much improvement is possible for a fixed
problem size given more cores

- Gustafson’s Law — how much improvement is possible given a
fixed amount of time and given more cores

epCe




Amdahl’'s Law

- Performance improvement from parallelisation is strongly
limited by serial portion of the code

- As the serial part's performance is not increased by adding more
processes/threads

- Based on having a fixed problem size

1
- P)+ 7

- For example, 90% parallelisable (P=0.9):
- 5(16) = 6.4
- 5(1024) = 9.9

S(N) =

<
< S
h il
)
o

epCe




Amdahl’s Law

25

20

15

Speedup

em=p = 90%

256

512 1024

Parallel Tasks




Gustafson’s Law

- If you can increase the amount of work done by each
process/task then the serial component will not dominate
- Increase the problem size to maintain scaling

- This can be in terms of adding extra complexity or increasing the
overall problem size.

S(N)=N—-(1—-P)(N—-1)

- For example, 90% parallelisable (P=0.9):
- S(16) = 14.5
- 8(1024) = 921.7

epCe

<
< S
F il
)
o




Gustafson’s Law

1200
1000
800
Qo
>
3 600 om=p = 95%
Q.
» @==p = 90%
400
200
0
1 2 4 8 16 32 64 128 256 512 1024
Parallel Tasks




Summary

\)N 1 VE‘?
S
e CC lfo : I
~ 1 e
o PS T
v(\& ,g:‘ = Q_,o
OIN B




