# Parallel Programming

#### **Overview and Concepts**

Dr Mark Bull, EPCC markb@epcc.ed.ac.uk



## Outline

- Why use parallel programming?
- Parallel models for HPC
  - Shared memory (thread-based)
  - Message-passing (process-based)
  - Other models
- Assessing parallel performance: scaling
  - Strong scaling
  - Weak scaling
- Limits to parallelism
  - Amdahl's Law
  - Gustafson's Law



# Why use parallel programming?

It is harder than serial so why bother?



## Drivers for parallel programming

- Traditionally, the driver for parallel programming was that a single core alone could not provide the time-to-solution required for complex simulations
  - Multiple cores were tied together as a HPC machine
  - This is the origin of HPC and explains the symbiosis of HPC and parallel programming
- Recently, due to the physical limits on the increase in power of single cores, the driver is due to the fact that all modern processors are parallel
  - In effect, parallel programming is required for all computing, not just HPC



### Focus on HPC

- In HPC, the driver is the same as always
  - Need to run complex simulations with a reasonable time to solution
  - Single core or even single/multiple processors in a workstation do not provide the compute/memory/IO performance required
- Solution is to harness the power of multiple cores/ memory/storage simultaneously
- In order to do this we require concepts to allow us to exploit the resources in a parallel manner
  - Hence, parallel programming
- Over time a number of different parallel programming models have emerged.



#### **Parallel models**

How can we write parallel programs



### Shared-memory programming

- Shared memory programming is usually based on threads
  - Although some hardware/software allows processes to be programmed as if they share memory
  - Sometimes known as Symmetric Multi-processing (SMP) although this term is now a little old-fashioned
- Most often used for Data Parallelism
  - Each thread operates the same set of instructions on a separate portion of the data
- More difficult to use for Task Parallelism
  - Each thread performs a different set of instructions



#### Shared-memory concepts

- Threads "communicate" by having access to the same memory space
  - Any thread can alter any bit of data
  - No explicit communications between the parallel tasks



#### Advantages and disadvantages

- Advantages:
  - Conceptually simple
  - Usually minor modifications to existing code
  - Often very portable to different architectures
- Disadvantages
  - Difficult to implement task-based parallelism lack of flexibility
  - Often does not scale very well
  - Requires a large amount of inherent data parallelism (e.g. large arrays) to be effective
  - Can be surprisingly difficult to get good performance



# Message-passing programming

- Message passing programming is process-based
- Processes running simultaneously communicate by exchanging messages
  - Messages can be 2-sided both sender and receiver are involved in the process
  - Or they can be 1-sided only the sender or receiver is involved
- Used for both data and task parallelism
  - In fact, most message passing programs employ a mixture of data and task parallelism



# Message-passing concepts

- Each process does not have access to another process's memory
- Communication is usually explicit



#### Advantages and disadvantages

- Advantages:
  - Flexible almost any parallel algorithm imaginable can be implemented
  - Scaling usually only limited by your choice of algorithm
  - Portable MPI library is provided on all HPC platforms
- Disadvantages
  - Parallel routines usually become part of the program due to explicit nature of communications
    - Can be a large task to retrofit into existing code
  - May not give optimum performance on shared-memory machines
  - Can be difficult to scale to very large numbers of processes (>100,000) due to overheads



# Scaling

#### Assessing parallel performance



# Scaling

- Scaling is how the performance of a parallel application changes as the number of parallel processes/threads is increased
- There are two different types of scaling:
  - Strong Scaling total problem size stays the same as the number of parallel elements increases
  - Weak Scaling the problem size increases at the same rate as the number of parallel elements, keeping the amount of work per element the same
- Strong scaling is generally more useful and more difficult to achieve than weak scaling



# Limits to parallel performance

How much can you gain from parallelism



#### Performance improvement

- Two theoretical descriptions of the limits to parallel performance improvement are useful to consider:
  - Amdahl's Law how much improvement is possible for a fixed problem size given more cores
  - Gustafson's Law how much improvement is possible given a fixed amount of time and given more cores



#### Amdahl's Law

- Performance improvement from parallelisation is strongly limited by serial portion of the code
  - As the serial part's performance is not increased by adding more processes/threads
  - Based on having a fixed problem size

$$S(N) = \frac{1}{(1-P) + \frac{P}{N}}$$

- For example, 90% parallelisable (P=0.9):
  - S(16) = 6.4
  - S(1024) = 9.9



#### Amdahl's Law





### Gustafson's Law

- If you can increase the amount of work done by each process/task then the serial component will not dominate
  - Increase the problem size to maintain scaling
  - This can be in terms of adding extra complexity or increasing the overall problem size.

$$S(N) = N - (1 - P)(N - 1)$$

- For example, 90% parallelisable (*P*=0.9):
  - S(16) = 14.5
  - S(1024) = 921.7



#### Gustafson's Law







