
Parallel Programming
Overview and Concepts

Dr Mark Bull, EPCC
markb@epcc.ed.ac.uk

Outline
• Why use parallel programming?
• Parallel models for HPC

•  Shared memory (thread-based)
•  Message-passing (process-based)
•  Other models

• Assessing parallel performance: scaling
•  Strong scaling
•  Weak scaling

•  Limits to parallelism
•  Amdahl’s Law
•  Gustafson’s Law

Why use parallel programming?
It is harder than serial so why bother?

Drivers for parallel programming
•  Traditionally, the driver for parallel programming was that

a single core alone could not provide the time-to-solution
required for complex simulations
•  Multiple cores were tied together as a HPC machine
•  This is the origin of HPC and explains the symbiosis of HPC and

parallel programming

• Recently, due to the physical limits on the increase in
power of single cores, the driver is due to the fact that all
modern processors are parallel
•  In effect, parallel programming is required for all computing, not just

HPC

Focus on HPC
•  In HPC, the driver is the same as always

•  Need to run complex simulations with a reasonable time to solution
•  Single core or even single/multiple processors in a workstation do

not provide the compute/memory/IO performance required

• Solution is to harness the power of multiple cores/
memory/storage simultaneously

•  In order to do this we require concepts to allow us to
exploit the resources in a parallel manner
•  Hence, parallel programming

• Over time a number of different parallel programming
models have emerged.

Parallel models
How can we write parallel programs

Shared-memory programming
• Shared memory programming is usually based on threads

•  Although some hardware/software allows processes to be
programmed as if they share memory

•  Sometimes known as Symmetric Multi-processing (SMP) although
this term is now a little old-fashioned

• Most often used for Data Parallelism
•  Each thread operates the same set of instructions on a separate

portion of the data

• More difficult to use for Task Parallelism
•  Each thread performs a different set of instructions

Shared-memory concepts
•  Threads “communicate” by having access to the same

memory space
•  Any thread can alter any bit of data
•  No explicit communications between the parallel tasks

Advantages and disadvantages
• Advantages:

•  Conceptually simple
•  Usually minor modifications to existing code
•  Often very portable to different architectures

• Disadvantages
•  Difficult to implement task-based parallelism – lack of flexibility
•  Often does not scale very well
•  Requires a large amount of inherent data parallelism (e.g. large

arrays) to be effective
•  Can be surprisingly difficult to get good performance

Message-passing programming
• Message passing programming is process-based
• Processes running simultaneously communicate by

exchanging messages
•  Messages can be 2-sided – both sender and receiver are involved

in the process
•  Or they can be 1-sided – only the sender or receiver is involved

• Used for both data and task parallelism
•  In fact, most message passing programs employ a mixture of data

and task parallelism

Message-passing concepts
• Each process does not have access to another process’s

memory
• Communication is usually explicit

Advantages and disadvantages
• Advantages:

•  Flexible – almost any parallel algorithm imaginable can be
implemented

•  Scaling usually only limited by your choice of algorithm
•  Portable – MPI library is provided on all HPC platforms

• Disadvantages
•  Parallel routines usually become part of the program due to explicit

nature of communications
•  Can be a large task to retrofit into existing code

•  May not give optimum performance on shared-memory machines
•  Can be difficult to scale to very large numbers of processes

(>100,000) due to overheads

Scaling
Assessing parallel performance

Scaling
• Scaling is how the performance of a parallel application

changes as the number of parallel processes/threads is
increased

•  There are two different types of scaling:
•  Strong Scaling – total problem size stays the same as the number

of parallel elements increases
•  Weak Scaling – the problem size increases at the same rate as the

number of parallel elements, keeping the amount of work per
element the same

• Strong scaling is generally more useful and more difficult
to achieve than weak scaling

Limits to parallel performance
How much can you gain from parallelism

Performance improvement
•  Two theoretical descriptions of the limits to parallel

performance improvement are useful to consider:

•  Amdahl’s Law – how much improvement is possible for a fixed

problem size given more cores

•  Gustafson’s Law – how much improvement is possible given a
fixed amount of time and given more cores

Amdahl’s Law
• Performance improvement from parallelisation is strongly

limited by serial portion of the code
•  As the serial part’s performance is not increased by adding more

processes/threads
•  Based on having a fixed problem size

•  For example, 90% parallelisable (P=0.9):
•  S(16) = 6.4
•  S(1024) = 9.9

Amdahl’s Law

Gustafson’s Law
•  If you can increase the amount of work done by each

process/task then the serial component will not dominate
•  Increase the problem size to maintain scaling
•  This can be in terms of adding extra complexity or increasing the

overall problem size.

•  For example, 90% parallelisable (P=0.9):
•  S(16) = 14.5
•  S(1024) = 921.7

Gustafson’s Law

Summary

