
Introduction to
ARCHER and Cray MPI

Running a Simple Parallel Program

Aims
•  To familiarise yourself with running parallel programs

•  To run a real parallel code (that does file I/O)
•  on different numbers of cores
•  measure the time taken
•  observe increase in performance

•  Acknowledgements
•  algorithm, diagrams and images taken from:
•  Hypermedia Image Processing Reference, Bob Fisher, Simon

Perkins, Ashley Walker and Erik Wolfart, Department of Artificial
Intelligence, University of Edinburgh (1994)

Image sharpening
•  Images can be fuzzy for two main reasons

•  random noise
•  blurring

•  Aim to improve quality by
•  smoothing to remove noise
•  detecting edges
•  sharpening up the image with the edges

edges fuzzy sharp

Technicalities
•  Each pixel replaced by a weighted average of its neighbours

•  weighted by a 2D Gaussian
•  averaged over a square region

•  we will use:
•  Gaussian width of 1.4
•  a 17x17 square

•  then apply a Laplacian
•  this detects edges
•  a 2D second-derivative ∇2

•  Combine both operations
•  produces a single convolution filter

Implementation

•  For over every pixel in the image
•  loop over all pixels in the 17x17 square surrounding it
•  add in the value of the pixel weighted by a filter

•  This gives the edges
•  add the edges back into the original image with some scaling factor

•  we use 1.0
•  rescale the sharpened image so pixels lie in the range 0 - 255

Parallelisation: Distributed Memory/MPI
•  Each pixel can be processed independently
•  A master process reads the image
•  Broadcast the whole image to every processor
•  Each processor computes edges for a subset of pixels:

•  scan the image line by line
•  with four processors, each processor computes every fourth pixel

•  Combine the edges back onto a master process
•  add back into original image and rescale
•  save to disk

•  Reports two times:
•  calculation time for just computing edges on each processor
•  overall time for the whole program

Parallelisation: Shared Memory/OpenMP
•  Each pixel can be processed independently
•  The master thread reads the image
•  Store the image in shared memory
•  Each thread/core computes edges for a subset of pixels:

•  scan the image line by line
•  with four cores, each thread computes every fourth pixel

•  On the master thread only
•  add back into original image and rescale
•  save to disk

•  Reports two times:
•  calculation time taken for just computing edges on each thread
•  overall time for the whole program

Parallelisation

1 2 3 4 1

2 3 4 1 2

3

Compiling and Running
•  We provide a tar file with code and sample images

•  one pair of codes uses MPI and Fortran/C
•  the other pair uses OpenMP and Fortran/C

•  You should:
•  copy tar file it to your local account
•  unpack it
•  compile it
•  run it on the back end using appropriate batch scripts
•  view the input and output images using eog (Eye Of Gnome)
•  note the times for different numbers of processors

•  can you interpret them?

•  See the exercise sheet for full details!

•  Log on to ARCHER and compile and run a code.
•  Password:
• Reservation ID:
• http://tinyurl.com/archer230414/Exercises/

P01_sharpen.pdf
•  If you are using Windows or do not have SSH installed

you will need to obtain an SSH client. One such client is
Putty, which can be obtained :

•  http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
•  http://sourceforge.net/projects/xming/

