Compilers

Algorithms to executables

EPSRC NEE==

Outline

What does compiling mean?
Libraries

Anatomy of a compiler

Compiler “optimisations”

Can the compiler parallelise my code?
Why are there differences in compilers?

epce

—
<

~

Compiling

What does compiling mean?

\NIVE
» 9
< N A
archer epCCl 8
. ~El .
NO%)z
b £ &
DTN

N
Compiling Overview

HPC programs are usually written in a high-level, human-
readable language.
Almost always Fortran or C (99% of all HPC applications)
Occasionally C++; rarely something else

Processors execute machine code (via instruction sets)

Compilers convert high-level source code into machine
code.
Also incorporate functionality from external libraries

Usually try to optimise the code produced so that it runs as fast as
possible on the processors

epce

Libraries

Libraries provide functionality that is common across
multiple programs
Low level — e.qg. filesystem access. Usually not interesting to users

Optimised numerical operations — e.g. linear algebra, Fourier
transformations

Communications and parallelism — e.g. Message Passing Interface
(MPI), OpenMP
The compiler combines the code in these libraries with the
code generated from the user’s program to produce the
final executable.

Linking at run time is also possible — known as dynamic linking (or
shared libraries).

epcc

Anatomy of a compiler

How does it actually work?

\NIVE
» 9
Y ~7 | €
arcnenr i) B
. ~El .
NO%)z
b £ &
DTN

Compiler Flow

Source Code
Files Libraries

l |

Compile Link
Source S Machine S Full
Code Code Application
Object Executable
Files (*.0) Binary File

epce

.
Compile Stage

Transforms high level source to machine code
Produces object files — usually one object file per source file

Actually consists of a number of sub-stages
Details are beyond this course

Optimisations are performed at this stage
More on optimisations later

epcc

.
Link Stage

Obiject files are combined (/inked) to produce the actual
application

Application is an executable binary file
Any library code required by the application is also linked
at this stage

Two forms of linking:
Static — All code is combined into a single executable file

Dynamic — Code from libraries is not combined into executable file,
iInstead this code is dynamically include when the executable is run

epcc

Compiler optimisations

What do they do? When should/shouldn’t | use them?

\NIVE
» 9
Y[~7 &
archer epCCl 8
. ~El .
NO%)z
b £ &
DTN

Optimisation

Compiler will try to alter produced code so it runs more
quickly
This can be done at a number of levels and can include the
reordering of operations
Note: although these are called optimisations, this is a
misnomer
Resulting code is never optimal
Seldom any iterative process
Seldom any attempt to quantify effect of any transformations

Usually a predetermined sequence of transformations that is known
to produce performance gains for some codes.

epce

Optimisation strategies

Loop index reordering (to match memory layout)
Loop unrolling

Use of fast mathematical operators
Function inlining (avoiding a function call)
Operation reordering to allow for cache reuse

\Q 77
< it
o

<

~

epcc

When to use optimisation

Simple answer: always

You should always use the performance gains given by
optimisation
If you are debugging then you usually switch optimisation

off to ensure that the statements are being executed in
the order you specified

If you suspect that compiler optimisations are causing a
problem you can turn them off gradually

All good compilers allow the specification of a range of optimisation
levels so you can turn it off gradually

epce

2
-
<

~

Compilers and parallelisation

Can compilers parallelise my code?

\NIVE
» 9
< iz A
archenr e CC i
. RE! .
S A A
b 428
OINBY

.
Compiler parallelisation

Compilers can produce parallel (or vector) instructions
Makes use of the SIMD instructions on the core’s floating point unit.

However, they cannot produce the general, high-level
parallelism required for scaling on multiple cores
Compilers do not have the holistic view required to produce this
level of parallism
Data parallelism is usually easier to produce automatically than
task parallelism
Attempts have been made to automate this but with limited success
so far.

epce

Different compilers

Why are there differences between compilers?

\NIVE
> O
Y ~7 | €
archer e DCCl &2
. ~El .
NO%)z
b 428
DTN

Standards and implementations

Although standards exist they cannot cover all cases and
contain ambiguities

When the standard is not clear then it is up to the compiler
architect to select the behaviour
Differences exist between compiler implementations

VS
> S
t“ - -

epcc

o A
P
J

