
 
 

Advanced OpenMP 

Lecture 9: OpenMP implementation 



Introduction 

•  How is an OpenMP program actually implemented?  

•  As a programmer, it may help to understand this 
–  understand program performance. 
–  write more efficient code.  

•  We will look at general structure and issues, rather than at a 
particular implementation.  

•  A typical OpenMP implementation has two parts: The 
compiler and the runtime library. 



Compiler 

•  We won’t go into detail about how compilers work... 

•  An OpenMP compiler transforms  code with OpenMP 
directives to standard code (Fortran/C/C++) with calls to the 
OpenMP runtime library.  

•  Two alternatives: 
1. Source-to-source translator 
2. Integral part of f90/cc/CC  



Compilers (cont.) 

•  Source-to-source translator does the transform literally: its 
output is real, compilable source code with calls to runtime 
library.  

•  This is then compiled and linked by a standard compiler. 

 

Pros: portable solution: same compiler can be used on multiple 
platforms.  

Cons: difficult to take advantage of all optimisation opportunities 



Compilers (cont.) 

•  If OpenMP is built in to the standard compiler (e.g. pgf90, 
gcc), then no transformed source code is produced. 

Pros:  can better exploit opportunities for optimisation  
–  can utilise special assembler instructions 
–  fuller integration with sequential optimiser 
–  better integration with debuggers. 

 

Cons: non-portable, platform specific solution  



Parallel regions 

•  The body of the parallel region is placed inside a new 
subroutine. 
–  This is called outlining (opposite of inlining!) 

•  The parallel region is replaced by a call to an OpenMP 
runtime library function (run_in_parallel()). 

•  The address of the outlined subroutine is passed as an 
argument to run_in_parallel() 



Data attribute scoping 

•  Shared variables are passed in the argument list of the 
outlined subroutine.  

•  Private variables are declared locally inside the outlined 
subroutine.  

•  Reduction variables require both: a private variable for the 
local copies and a shared variable for the final result. 

•  Threadprivate global variables are more awkward.  
–  can be implemented using an array of variables with lookup based on 

thread number 
–  need to modify references to the variable. 
–  or by dirty tricks in the linker........   



Example 

 

OpenMP source code: 
 

 

      INTEGER MYID, N  

 

!$OMP PARALLEL SHARED(N), PRIVATE(MYID) 

      MYID = OMP_GET_THREAD_NUM() 

      PRINT *, “Hello from thread “, MYID, “ of “, N 

!$OMP END PARALLEL 

 

 



Example (cont.) 

Transformed code: 
      INTEGER MYID, N  

 

      CALL RUN_IN_PARALLEL(_OMP_$1$_PR_,N,....) 

 

 

      SUBROUTINE _OMP_$1$_PR_(N) 

      INTEGER N                    !SHARED 

      INTEGER MYID                 !PRIVATE  

 

      MYID = OMP_GET_THREAD_NUM() 

      PRINT *, “Hello from thread “, MYID, “ of “, N 

      END 



Master and workers 

•  Master thread executes sequentially until first call to 
run_in_parallel(). 

•  The first time run_in_parallel() is called, the master 
thread creates worker threads. 

•  Master thread assigns task to be done by workers, then also 
executes task itself. 

•  Master and workers synchronise at a barrier. 

•  Master returns from run_in_parallel() and continues 
executing sequentially.  

•  Workers busy wait until master calls run_in_parallel() 
again. 



Master thread 

 

run_in_parallel(task,args) 

{ 

  if (firsttime) { 

     for (i=1; i<nthreads; i++) 

         pthread_create (&tid, attr, worker_func); 

  } 

  set_worker_task(task,args); 

  task(args);  

  barrier();  

}  



Worker threads 

 

 

worker_func() 

{ 

   while(1) { 

     wait_for_task();  

     task(args); 

     barrier(); 

   } 

} 

      

      



Parallel loops 

•  These are handled in a similar way to parallel regions 

•  In the outlined subroutine, the real loop bounds are replaced 
with dummy loop bounds, passed as arguments.  

•  The runtime library will call the outlined routine for every loop 
chunk, passing in the required bounds, depending on the 
chosen schedule.  



Example 

OpenMP code: 
!$OMP DO 

    DO I = 1,N 

       A(I) = B(I) + C(I) 

    ENDDO  

 

Outlined routine: 

       SUBROUTINE _OMP_$23$_DO_(A,B,C,START,END) 
    INTEGER I 

    DO I = START,END 

       A(I) = B(I) + C(I) 

    ENDDO  



Synchronisation 

•  Lock routines can be implemented using Pthread mutexes, 
or more efficiently via assembly instructions (atomic test-and-
set) 

•  Critical sections are simply a lock/unlock pair.   
–  use different locks for differently named sections 
–  necessary to manage a global name space of named sections 

•  Atomic directive can be implemented as a critical section with 
a special name. 
–  but much better to use assembly instructions 



Synchronisation (cont.) 

•  A simple barrier can be written using a using a locked 
counter.   
–  When each thread arrives it increments the counter and busy waits on 

a global flag.  
–  Last thread in resets counter and toggles the flag. 

•  Rather inefficient: cost is (at least) O(p). 

•  Much better to use a tree structure which costs O(log(p)) - 
synchronise between subsets first.  

•  Can also avoid use of locks. 



Synchronisation (cont.) 

•  Master directive is trivial: 

 if (omp_get_thread_num() = 0)  
   { 

   } 

•  Single directive is more tricky 
–  When a thread arrives it checks a flag. If it is the first to arrive,  it sets 

the flag and executes the block. Otherwise skip the block. Flag 
requires a mutex: can be a bottleneck.  



Reductions 

•  Simplest way is to reduce into the shared variable, protected 
by a mutex lock.  
–  inefficient: scales as O(p) or worse. 
–  causes non-reproducible results for floating point operations. (running 

identical code on the same number of threads may give different 
answers on different runs!)  

•  Better to use a tree structure, similar to a barrier 
–  scales as O(log(p))  
–  can be made reproducible by enforcing the order of operations.  


