

Advanced OpenMP

Lecture 10: Alternatives to OpenMP

What’s wrong with OpenMP?

•  OpenMP is designed for programs where you want a fixed number of
threads, and you always want the threads to be consuming CPU cycles.
–  cannot arbitrarily start/stop threads
–  cannot put threads to sleep and wake them up later

•  OpenMP is good for programs where each thread is doing (more-or-less)
the same thing.

•  Although OpenMP supports C++, it’s not especially OO friendly
–  though it is gradually getting better.

•  OpenMP doesn’t support Java

•  OpenMP programs don’t run on distributed memory architectures (e.g.
clusters of PCs)

What’s wrong with OpenMP? (cont.)

Can do this Can’t do this Can do this

What are the alternatives?

•  Threading libraries
–  POSIX threads
–  Boost threads
–  Intel TBB
–  Java threads

•  Other programming models
–  MPI
–  PGAS languages
–  Novelties

Threading libraries

•  Pure library interfaces (no directives)

•  Lower level of abstraction than OpenMP
–  requires more changes to code
–  harder to maintain
–  some are less portable than OpenMP

•  Free software

Programming model

•  Similar to OpenMP in many respects
–  shared and private data
–  similar synchronisation issues

•  Routine to create a new thread
–  pass as arguments a function for the new thread to execute, plus

some arguments
–  thread dies when the passed function exits

•  Routines for synchronising threads
–  wait for a thread to exit
–  locks, barriers, semaphores, condition variables,….

•  Some libraries have the notion of tasks
–  pass a function to a thread pool: task gets executed by one of the

threads sometime in the future

POSIX threads

•  POSIX threads (or Pthreads) is a standard library for shared
memory programming without directives.
–  Part of the ANSI/IEEE 1003.1 standard (1996)

•  Interface is a C library
–  no standard Fortran interface
–  can be used with C++, but not OO friendly

•  Widely available
–  even for Windows
–  typically installed as part of OS
–  code is pretty portable

•  Lots of low-level control over behaviour of threads

Thread forking

#include <pthread.h>

int pthread_create(

 pthread_t *thread,

 const pthread_attr_t *attr,

 void*(*start_routine, void*),

 void *arg)

•  Creates a new thread:
–  first argument returns a pointer to a thread descriptor.
–  can set attributes.
–  new thread will execute start_routine(arg)
–  return value is error code.

Thread joining

#include <pthread.h>

int pthread_join(

 pthread_t thread,

 void **value_ptr)

•  Waits for the specified thread to finish.
–  thread finishes when start_routine exits
–  second argument holds return value from start_routine

Synchronisation

•  Barriers

•  Mutex locks
–  Behaviour is essentially the same as the OpenMP lock routines.

•  Condition variables
–  Behaviour is essentially the same as wait/notify in Java

Hello World

#include <pthread.h>

#define NTHREADS 5

int i, threadnum[NTHREADS];

pthread_t tid[NTHREADS];

for (i=0; i<NTHREADS; i++) {

 threadnum[i]=i;

 pthread_create(&tid[i], NULL, hello, &threadnum[i]);

}

for (i=0; i<NTHREADS; i++)

 pthread_join(tid[i], NULL);

Hello World (cont.)

void* hello (void *arg) {

 int myid;

 myid = *(int *)arg;

 printf(“Hello world from thread %d\n”, myid);

 return (0);

}

BOOST threads

•  C++ library for multithreaded programming

•  Similar functionality to POSIX threads
–  but with a proper OO interface

•  Closest thing to a C++ standard
–  new version of C++ standard (C++11) contains a standard thread

library which is similar to BOOST threads.
–  will take some time for stable compilers to appear

•  Reasonably portable
–  need to install and build library
–  should be OK for most common C++ compilers

•  http://www.boost.org/doc/libs/1_40_0/doc/html/thread.html

Hello world

#include <boost/thread/thread.hpp>

#include <iostream>

void hello()

{

 std::cout << "Hello world” << std::endl;

}

int main(int argc, char* argv[])

{

 boost::thread thrd(&hello);

 thrd.join();

 return 0;

}

Intel Thread Building Blocks (TBB)

•  C++ library for multithreaded programming
•  Offers somewhat higher level of abstraction that POSIX/

BOOST threads
–  notion of tasks rather that explicit threads
–  support for parallel loops and reductions
–  support for concurrency on containers

•  Moderately portable
–  support for Intel and gcc compilers on Linux and Mac OS X, Intel and

Visual C++ on Windows
–  no build required to install

•  http://www.threadingbuildingblocks.org

Hello World
 #include <iostream>

#include <tbb/parallel_for.h>

using namespace tbb;

class Hello
{
public:
void operator()(int x) const {
std::cout << "Hello world\n";
}
};

int main()
{
// parallelizing:
// for(int i = 0; i < 2; ++i) { ... }
parallel_for(0, 2, 1, Hello());

return 0;
}

Java threads

•  Threads are an inbuilt part of the Java language

•  Very portable (available in every Java VM)

•  Java has lots of nice properties as a programming language
–  high performance isn’t necessarily one of them!

•  Well integrated into Java’s OO model

•  Both explicit thread creation and task models

•  Synchronisation methods
–  every object contains a mutex lock
–  condition variables, barriers, explicit lock objects

•  http://java.sun.com/docs/books/tutorial/essential/concurrency/

MPI

•  Message Passing Interface (MPI)

•  Principal method used for programming distributed memory
architectures
–  library interface for Fortran, C, C++

•  MPI programs will run just fine on multicore systems

•  Need to install an MPI library and configure it to use shared
memory to pass messages

•  MPI programs typically take much longer to develop than
OpenMP programs (months not weeks)
–  extremely portable and scalable solution

•  Hybrid OpenMP/MPI becoming a common solution for very
large systems

PGAS languages

•  Partitioned Global Address Space

•  Genuine language extensions
–  Co-array Fortran
–  Unified Parallel C

•  Designed to work on distributed memory systems and be
easier to write than MPI
–  will also work on shared memory

•  Lack of mature, robust implementations that actually deliver
good performance

•  Not terribly portable at the moment

Novelties

•  As multicore programming becomes mainstream, a lot of
new programming languages/APIs have appeared
–  some commercial, some academic
–  Intel ArBB, Cilk, OpenCL, HMPP, OpenACC, StarSs, X10, Chapel,….

•  Some are designed to address accelerator devices such as
GPUs as well as “traditional” multicore.

•  Unclear which (if any) will become popular/mature/widely
implemented.

•  Probably best avoided in the short term, unless you wish to
experience a lot of pain!

What to do?

•  OpenMP is a good solution for many programs in the
scientific computing area.

•  However, there may be very sound reasons for not using
OpenMP.

•  If you are going to use one of the alternatives, you should
convince yourself carefully of why you are not using
OpenMP!

