
Lab Exercises -
Producing Parallel Code

Explanation about Activity numbering convention
The activities in this lab are based on chapters 6, 7, 8 and 9 of the book””, Activities 6-1 to 6-
5 are based on Chapter 6 - Where to Parallelize; activities numbed 7-1 … are based on
Chapter 7 - Implementing Parallelism; activities numbered 8-1 … are based on Chapter 8 -
Checking for Errors; activities numbered 9-1 … are based on Chapters 9 – Tuning Parallel
Applications.

Step 1 Hotspots Analysis
ACTIVITY 6-1: BUILDING THE EXAMPLE APPLICATION

In this activity you build and run the Mandelbrot program.

1. Open an Intel Parallel Studio XE command prompt.

• Windows
 Start | All Programs | Intel Parallel Studio 2013 | Command Prompt
 | Parallel Studio XE with Intel Compiler | Intel 64 Visual Studio

• Linux

To make the Parallel Studio XE tools available from a shell, source the
following scripts (or add the commands to your ./bash_profile):

 source /opt/intel/composerxe/bin/compilervars.sh intel64
 source /opt/intel/vtune_amplifier_xe/amplxe-vars.sh
 source /opt/intel/inspector_xe/inspxe-vars.sh

 In Linux export the EDITOR environment variable to point to your favourite editor e.g. :

 export EDITOR=gedit

2. Navigate to the Chapter6 folder.

3. Build the program with the following command:

• Windows

icl /O2 /Qipo wtime.c main.cpp mandelbrot.cpp ppm.cpp -o 6-1.exe

• Linux

icc -O2 -ipo wtime.c main.cpp mandelbrot.cpp ppm.cpp -o 6-1.exe

4. Run the program 6-1.exe you have just created and record the time taken in the table
below.

Time to calc

Time to print

Time (Total)

5. Examine the files main.cpp mandelbrot.cpp ppm.cpp (Hint, you can open them in
visual studio by just typing their names on the command line).

By looking at the source code can you guess which function and loops take the most time to execute? Make a
note below:

Function that I think takes
the most time to execute

Loop that I think takes the
most time to execute

6. Examine the generated default.ppm file with a PPM viewer (optional).

On Linux systems y o u should have a default PPM viewer installed, such as gthumb,
eog, or gwenview.

On Windows you can view the default.ppm file with the program IrfanView.exe which is
available from www.irfanview.com

ACTIVITY 6-4: CONDUCTING A HOTSPOT ANALYSIS WITH AMPLIFIER XE

In this activity you carry out a hotspot analysis on the Mandelbrot program with
Amplifier XE.

1. Make sure you have carried out Activity 6-1.

2. Rebuild the application, adding the /Zi flag (Linux –g) to generate debug information,
and the /Ob1 flag (Linux: -inline-level=1) which reduces the amount of code that the compiler
inlines (Functions can disappear because of compiler inlining. Adding the /Ob1 option to the
build improves visibility):

• Windows
 icl /O2 /Qipo /Zi /Ob1 wtime.c main.cpp mandelbrot.cpp ppm.cpp
 -o 6-4.exe

• Linux
icc -O2 -ipo -g –inline-level=1 wtime.c main.cpp mandelbrot.cpp
ppm.cpp -o 6-4.exe

3. Start an Amplifier XE GUI from the command line:

amplxe-gui

4. Create a new project named Chapter 6.

 a. Select File | New | Project.

 b. In the Project Properties dialog, make sure the Application Field points to your
Mandelbrot application, then press <OK> to close the dialog box.

5. Carry out a hotspot analysis by

a. selecting File | New | Analysis . . .

b. Choose the analysis type Algorithm Analysis | Basic Hotspots

c. Press the button to start the analysis

Examining the Hottest Function and Hottest Loops
6. From the r e s u l t s P a n e p r e s s t h e bottom-up button view

You should see a graph similar to the picture below.

NB: make sure the ‘Grouping‘ is Function/Call Stack

Double-click the largest hotspot. The source view should be displayed.

Question:
Which line of code takes the most time?

Manual Traversal of the hottest loops

7. In the stack pane (on the right of the source view), manually trace back up the call stack (by
double-clicking the call stack entries) until you find code that has a loop in it.

 NB: each time you double click on the stack, a new code pane will open!

You should be able to find the best place to add parallelism by doing this manual stack
traversal.

Question:
Is this loop the same as the one you identified in Activity 6-1 (Step 5)?

Turning on the loop mode.
8. Go back to the Bottom-up view.

9. At the bottom of the results pane there are a set of drop down filters, change the Loop Mode from
‘Functions only’ to ‘Loops only’:

You will find that this is the easiest way to identify the hottest loops.

Double click on the hottest two loops and examine the code.

Question:
Is this loop the same as the one you identified in Activity 6-1 (Step 5)? If not can you
think of a reason why not?

10. Optional Activity – Loop Profiling using the Intel Compiler

If you have time, try to find the hotspots using the profiling features of the Intel compiler. The instructions

are at the end of this lab sheet.

Step 2 – Implementing Parallelism
ACTIVITY 7-1: Adding parallelism
In this activity you add parallelism to the code using an OpenMP for loop.

1. Try adding an OpenMP loop to the outer loop in the function Mandlebrot (Mandlebrot.cpp line 35)

#pragma omp parallel for
for (int i=0; i<maxI; i++) {
 for (int j=0; j<maxJ; j++) {
 SetZ(i, j, xinc, yinc);
 }
}

2. Build the program with the following command:

• Windows

icl /O2 /Qipo / Q o p e n m p wtime.c main.cpp mandelbrot.cpp ppm.cpp
-o 7-1.exe

• Linux

icc -O2 -ipo –openmp wtime.c main.cpp mandelbrot.cpp ppm.cpp
-o 7-1.exe

3. Run the program 7-1.exe you have just created and record the time taken in the table
below. Calculate the speed up using the formula Speedup = Original Time / New Time.

 Time

6-1.exe
(A)

Time
7-1.exe
(B)

Speedup
(A/B)

Time to calc

Time to print

Time (Total)

4. Optional Activity – Using Cilk Plus and TBB

If you have time, try to re-implement this loop parallelism using (see slides for examples).

(a) Cilk Plus
(b) TBB

Step 3 - Debugging Parallel Errors
Warning- Step 3 uses a different application from the previous steps!

ACTIVITY 8-1: DETECTING AND FIXING A DEADLOCK

In this activity you use Inspector XE to detect and fix a deadlock. You can run this
activity on Linux or Windows.

Building and Running the Program

1. Copy the source from the Chapter8 folder into a new folder.
2. Traverse to the new folder.
3. Build the program with the following command:

• WINDOWS

icl /Od /Qopenmp /Zi pi.cpp -o 8-1.exe

• LINUX

icc -OO -openmp -g pi.cpp -o 8-1.exe

4. Run the program:
8-1.exe

You should see that the program will hang.

Detecting and Fixing the Deadlock

5. Start the Inspector XE GUI from the command line:
inspxe-gui

6. Create a new project named Chapter 8:
 Select File | New | Project.
 In the Project Properties dialog, fill in the application details.

7. Carry out a Detect Deadlocks analysis:
 Select File | New | Analysis.
 Select ‘Threading Error Analysis’ from the drop down box (see diagram below).
 Set the Analysis depth to be “Detect Deadlocks”
 Make sure the ‘ Terminate on deadlock’ box is selected.
 Click the Start button.

Important Note: if the program fails to abort after about 10 seconds, cancel the
run by pressing the ‘stop’ button

8. In your analysis you should see either a lock-hierarchy violation or a deadlock.
Click on the problem with the right hand mouse button and select ‘explain problem’
from the menu.

Read the description to make sure you understand the nature of the problem.

9. Now double-click on one of he problem(s), you will find that Inspector XE
highlights the use of a lock (see below).

The underlying problem is a coding error in the call to the function SafeAdd(),
where the programmer has accidently swapped the order that the locks are passed into
the function.

9. Fix the deadlock issue by editing lines 48 and 61 of pi.cpp to look like this:

48: SafeAdd(sum1,sum2,lock1,lock2);
61: SafeAdd(sum1,sum2,lock1,lock2);

10. Rebuild the application (see step 3 and step 4) and then run the program. The
program should run to completion without hanging.

11. Re-run the deadlock analysis (see step 7). No errors should be reported.

In this activity you used Detect Deadlocks analysis to find the deadlock. The
program also has a data race, but it was not detected. In Activity 8-2, you use
Inspector XE to detect and fix the data race.

ACTIVITY 8-2: DETECTING AND FIXING DATA RACES

In this activity you use Inspector XE to help detect and fix a data race. You can run
this activity on Linux or Windows.

Building and Running the Program
1. Continue to work with the modified version of pi.cpp. This step assumes you
have fixed the deadlock identified in Activity 8-1.

2. Build the program 8-2.exe with the following command:

• WINDOWS

icl /Od /Qopenmp /Zi pi.cpp -o 8-2.exe

• LINUX

icc -OO -openmp -g pi.cpp -o 8-2.exe

3. Run the program several times to make sure it works:

4. Set the number of threads to be 1 using the OMP_NUM_THREADS environment
variable, and then run the program several times and note its behavior:

• WINDOWS

set OMP_NUM_THREADS=1

8-2.exe

• LINUX
export OMP_NUM_THREADS=1
./8-2.exe

Does the program run correctly? What about the value of Pi, is it correct?
5. Repeat the previous step, but this time increase value of the OMP_NUM_THREADS
environment variable to be 2, then 4.

Detecting and Fixing the Data Race
6. Carry out a Detect Deadlocks and Data Races analysis in Inspector XE (in the
Inspector project you created in Activity 8-1):

 Select File | New | Analysis.
 In the Project Properties dialog, Change the application name to 8-2.exe.
 Highlight the Detect Deadlocks and Data Races analysis.
 Click the Start button.

7. After the analysis is displayed, look at the problem(s) reported. Make sure you
understand the issues.
8. Fix the data races by editing line 35 of pi.cpp to look like this:

#35: #pragma omp parallel sections private(x1,x2,sum1,sum2)

9. Repeat steps 2 to 5 to confirm that you have fixed the data races.
NB: Make sure you have deleted the environment variable OMP_NUM_THREADS before running
the program

• WINDOWS

set OMP_NUM_THREADS=
8-2.exe

• LINUX
unset OMP_NUM_THREADS
./8-2.exe

Step 4 - Tuning a Parallel Program
Warning- Step 4 uses a different application from the previous steps!

ACTIVITY 9-1: DEFINING A BASELINE

In this activity you build the code from Listings 9-4 and 9-5 and use Amplifier XE
to look at how parallel the resulting program is. You can run this activity on Linux
or Windows.

Building and Running the Program
1. Copy the source code in Listing 9-4 into a file named ParallelPrime.cpp, and
the source code in Listing 9-5 into a file named wtime.c 1 (they can also be found
already extracted in “Chapter 9” folder).

2. Build the program with the following command:

• WINDOWS
icl /O2 /Zi /Qopenmp /Ob1 ParallelPrime.cpp wtime.c -o 9-1.exe

• LINUX
icc -O2 -g -openmp -inline-level=1 ParallelPrime.cpp wtime.c -o
9-1.exe

3. Run the program and record the time taken:

9-1.exe

4. If the program does not run for about 2 to 3 seconds, edit the value in the
#define LAST statement in ParallelPrime.cpp and rebuild and run the program until it
runs for about 2 seconds.
#define LAST 300000

Using the Command-Line Version of Amplifier XE to Get a Timestamp
5. Start the command-line version of Amplifier XE, and record the elapsed time and
average concurrency:

amplxe-cl -collect concurrency ./9-1.exe

Make a note of the results directory (for example, r000cc). You will need this for Activity
9-2.

Does the concurrency look good? (Hint: compare the Average Concurrency value with
the Logical CPU Count).

If your result is poor, is there any indication in the results as to what the problem might
be?

ACTIVITY 9-2: IDENTIFYING THE CONCURRENCY HOTSPOTS

In this activity you use the GUI version of Amplifier XE to examine the results
from Activity 9-1. You can run this activity on Linux or Windows.

1. Open the GUI version of Amplifier XE, using the results directory that you
noted in step 5 of Activity 9-1:

amplxe-gui r000cc

2. Look at the Thread Concurrency Histogram and the CPU Usage Histogram in
the Summary page (This page will have automatically been displayed in step 1 of this
activity).

 What value is the Target Concurrency?

 What value is the Average Concurrency?

Record the names of the top three hotspots along with the CPU time used in the table below.

Hotspot CPU Time

3. Change the viewpoint of your results to Locks and Waits by pressing (change) :

Record the names of the top three waiting objects along with the wait time and wait count in the
table below.

Sync Object CPU Time Wait count

The Program has two different problems (you don’t know this yet – we are just telling you) – What
you should do is fix the problem associated with the Locks and Waits.

ACTIVITY 9-3: ANALYZING THE TIMELINE

 Steps 1-5 (Windows Only)

1. Display the Bottom-up page by clicking the Bottom-up button.
2. Make sure the transitions are displayed by checking the Transitions tick box:

3. In the timeline pane you should see several regions that are densily populated with yellow
transition lines.
 Highlight on of these dense regions and press the right hand mouse button and select
‘Zoom In and Filter by Selection’:

,

Keep expanding the view until you can clearly see the individual transition lines. You
should see that only one thread is ever running at any one time.

4. Hover your mouse over a transition line and read the information displayed.

5. Double-click the transition line, which should take you to the source lines.
If the transition is in a run time library there may be no source available! – in which case try to follow the
stack up to the place in your code where the runtime library is called.
Windows users now Jump to Step 9

Steps 6-8 (Linux Only)
6. Display the Bottom-up page by clicking the Bottom-up button.

7. In the timeline pane you should see several regions that have no CPU activity

 8. Highlight one of these dense regions and press the right hand mouse button and select
‘Zoom In and Filter by Selection’:

When you look in the hotspot, you should find that the hotspot is due to file IO.

Steps 9 onwards (Linux and Windows)
9. You should have found that the performance problem is caused to the call to printf in
PrintProgress() – where print is being called too many times . If this is the case, then modify the code

so it will look like this: (The additions are in large bold)

// Display progress
void PrintProgress(int Range)
{
 int Percent = 0;

 static int lastPercentile = 0;
 #pragma omp critical
 {
 gProgress++;
 Percent = (int)((float)gProgress/(float)Range *200.0f + 0.5f);
 }

 if(Percent % 10 == 0)
 {

 // we should only call this if the value is new!
 if(lastPercentile < Percent / 10)
 {
 printf("%s%3d%%", CursorBack,Percent);

 lastPercentile++;
 }
 }
}

10. Re-build the modified program and re-run the concurrency analysis (same as activity 9-1). Did the
program get better? Are there still any other problems?

Record the names of the top three hotspots along with the CPU time used in the table below.

Hotspot CPU Time

Additional note for when using earlier versions of the Intel compiler …
When using earlier versions of the Intel compiler with this lab, the use of the critical section
in section in PrintProgress() was a source of inefficiency:

#pragma omp critical
 {
 gProgress++;
 Percent = (int)((float)gProgress/(float)Range *200.0f + 0.5f);
 }

To correct this problem, the following change must be made:

 In ParallelPrime.cpp, edit lines 16 to 20 so that they look the same as the following:

16: #pragma omp atomic
17: gProgress++;
18:
19: Percent = (int)((float)gProgress/(float)Range *200.0f + 0.5f);
20:

Lab Exercises – Optional extras

ACTIVITY 6-2: USING THE COMPILER’S LOOP PROFILER

In this activity you use the Intel compiler to instrument the Mandelbrot program
and then find the busiest hotspots using the loopprofileviewer.

1. Make sure you have carried out Activity 6-1.

2. Rebuild the application, adding the /Zi option to generate debug information;
the option /Ob0 (linux: -inline-level=0) to reduce inlining; and the
/Qprofile options so that the compiler instruments the code:

• Windows

icl /Zi /O2 /Qipo wtime.c main.cpp mandelbrot.cpp \
ppm.cpp -o 6-2.exe /Ob0 /Qprofile-functions \
/Qprofile-loops:all /Qprofile-loops-report:2

• Linux

icc -g -O2 -ipo wtime.c main.cpp mandelbrot.cpp \
ppm.cpp -o 6-2.exe -inline-level=0 -profile-functions\
-profile-loops:all -profile-loops report:2

3. Run the program you have just created and record the time taken:

6-2.exe

4. Start the loopprofileviewer from the command line, and browse to the
XML file that has just been generated.

Which is the biggest function hotspot?

What line has the ‘hottest’ loop?

ACTIVITY 6-5: Further optimisation work
Try to parallelize other loops in the Mandelbrot application, using the techniques you have learned
in this lab to debug and tune the application.

	Explanation about Activity numbering convention
	Step 1 Hotspots Analysis
	Step 2 – Implementing Parallelism
	Step 3 - Debugging Parallel Errors
	Step 4 - Tuning a Parallel Program

