
Lab 1 - Back of the envelope
calculations

Objectives
At the end of this lab you should be able to

• Carry out a ‘back of the envelope’ calculation to see if an application will benefit from
running on an Intel® XeonTM Phi coprocessor.

• Build an application and run it natively on the coprocessor to confirm your calculations

The example application pi.c has four functions that you can use to se how well the Xeon Phi
responds to parallelism, vectorisation and high bandwidths. Each of the functions is included or
exclude from a build by the macros listed on column two.

Function Macro Characteristic
CalcPi CALC_PI Vectorised and

parallelised
CalcPiNoVec CALC_PI_NO_VEC Not vectorised, but is

parallelised
CalcPiNoParallel CALC_PI_NO_PARALLEL Vectorised but not

parallelised
CalcPiNoParallelNoVec CALC_PI_NO_PARALLEL_NO_VEC Neither Vectorised nor

Parallelised
testBytes TEST_BYTES High Bandwidth
Table 1: A list of functions in the code pi.

Each of the functions are included or exclude from a build by the macros listed on column two.

As you run through the lab you will be asked to ‘guestimate’ what the likely speed you will obtain by
running the code on xeon phi.

Introduction
To make best use of an Intel® XeonTM Phi coprocessor, any application must be well parallelised and
well vectorised. For good performance, your application should run over 90% parallel and be at
least 90% vectorised.

MIC hands-on programming, | May 2013, Cambridge Page 1

Activity 1: A quick smoke test

1.1 Building and running the application on your workstation
Step 1. Build the application using the make file, and the run it from the command line to make sure
it works and record the time each part of the program takes.

make clean

export OMP_NUM_THREADS=16

make step1

 ./step1.xeon

Function Time Taken
CalcPi

CalcPiNoVec

CalcPiNoParallel

CalcPiNoParallelNoVec

testBytes

Table 2: Results of running the code on the Xeon Workstation.

Step 2. Making a best guess at speed up

Given what you’ve learnt about how different kinds of code run on the Xeon Phi, make a best guess
at the following Questions :

Function Will it Run Faster
on Xeon Phi (Yes or
NO)?

Guesstimate much faster it will run

CalcPi YES / NO

CalcPiNoVec YES / NO

CalcPiNoParallel YES / NO

CalcPiNoParallelNoVec YES / NO

testBytes YES / NO

Table 3 : A first estimate of speedup

MIC hands-on programming, | May 2013, Cambridge Page 2

Step 3. Now build the application and run it on the Xeon Phi and record the results in Table 4.

make step3

ssh mic0 cd /CLASSFILES/lab-01

./run-mic.sh ./step3.mic

exit

Function Time Taken Speedup
(compared to Table 2)

CalcPi

CalcPiNoVec

CalcPiNoParallel

CalcPiNoParallelNoVec

testBytes

Table 4 : Results of running on Xeon Phi

Activity 2: Measuring Vectorisation
You can gauge the extent your application has been vectorised by running the application with and
without vectorisation, and then comparing the difference in the runtime.

Note that

• This activity uses a cut-down version of the application and only includes the functions
CalcPi and CalcPiNoVec.

• The number of iterations in the parallelised loops is reduced, so that you are not left waiting
for a long time for the program to complete. This is controlled by the macro NUM_STEPS
which is redefined in the Makefile.

• We reduce the Parallelism to 1 thread, so as to reduce any side-effect of having parallelism
and vectorisation together.

Step 4: Build and run the application, recording the time the program takes to run. The makefile
will add the option -xSSE2, to generate SSE2 instructions.

make step4

export OMP_NUM_THREADS=16

./step4.sse2.xeon

Elapsed Time ____________________________

MIC hands-on programming, | May 2013, Cambridge Page 3

Step 5: Now rerun the application, but set the number of threads to 1.

make step4

export OMP_NUM_THREADS=1

./step4.sse2.xeon

Elapsed Time ____________________________

Step 6: Now build the application. The makefile will add the options -no-vec and -no-simd,
which will disable the auto-vectoriser in the compiler

make step6

export OMP_NUM_THREADS=1

./step6.novec.xeon

Elapsed Time ____________________________

Step 7: Calculate the Fraction of code that has been vectorised using the formula below:

Tv = ((T1 – T2)/Vector Length-1) * Vector Length _____________________

Vector Fraction = Tv/T1 _____________________

Where T1 (from Step 6) is the time taken with one thread and vectorisation disabled, T2
(from step 5) is the time taken with one thread and vectorisation enabled.

Vector Length is the number of floating point values that can fit in the 128 bit SSE registers -
Since the program uses doubles, then the Vector Length is 2.

Step 8: Now guesstimate what the speed of application will be when running on a Xeon Phi, by
applying the ‘finger in the air’ rules of thumb to the runtime values of step 4.

MIC hands-on programming, | May 2013, Cambridge Page 4

Calculate the expected speedup by

• Applying the first rule to the vectorised portion of the code, (which is also highly parallel).
• Applying the second rule to the non-vectorised part of the code.

Step 9: Now build the application and run it on the Xeon Phi and record the results .

make step9

ssh mic0 cd /CLASSFILES/lab-01

./run-mic.sh ./step9.mic

exit

Questions:
1. How accurate was the Guesstimate? Can you suggest any reasons for the inaccuracies?

2. Examine pi.c. Does the code look ‘normal’, or does it have any coprocessor-specific parts?

3. Look at the makefile. Were there any extra compiler options used to enable the application

to be suitable for running on an Intel® XeonTM Phi?

Activity 3: Measuring Concurrency

1.2 Measuring concurrency
Step 10. You can use use Amplifier XE to see how parallel your code is by running a concurrency
analysis using the command line version of Intel ® VTuneTM Amplifier XE.

MIC hands-on programming, | May 2013, Cambridge Page 5

Note we are using the application built in Step 1.

Do the following (Your results will look be similar to those shown in Figure :

export OMP_NUM_THREADS=16

amplxe-cl -c concurrency -- ./step1.xeon

Concurrency ____________________

Logical CPU Count ________________

Elapsed Time ____________________

Figure 2: A sample output from running a concurrency analysis

Step11 (optional). You can work out the parallel efficiency of your code ‘by hand’ rather than using
VTune Amplifier XE. To do this re-run the application using just 1 thread and record the results.

export OMP_NUM_THREADS=1

./step1.xeon

Time Taken _____________________

Now work out the parallel and serial time, where T1 is the time taken with one thread (from this
step), T2 is the time taken with 16 threads (from step 1):

Tp = ((T1 – T2)/Num Cores-1) * Num Cores _____________________

Parallel Fraction = (Tp/T1) _____________________

Result Info

Parameter r000cc
------------------------ --

Application Command Line ./pi
CPU Name Intel(R) Xeon(R) E5 processor
Computer Name snbws3
Environment Variables
Frequency 3100000000
Logical CPU Count 16
MPI Process Rank
Operating System 2.6.32-279.el6.x86_64 Red Hat Enterprise Linux Server release 6.
3 (Santiago)
Result Size 1371932
User Name

Summary

MIC hands-on programming, | May 2013, Cambridge Page 6

Parallel Time = Time Taken * Parallel Fraction _____________________

Serial Time = Time Taken - Parallel Time _____________________

Questions
The answer may be slightly different from what you calculated in Step 10, can you suggest any
reasons why?

MIC hands-on programming, | May 2013, Cambridge Page 7

	Objectives
	Introduction
	Activity 1: A quick smoke test
	1.1 Building and running the application on your workstation

	Activity 2: Measuring Vectorisation
	Questions:

	Activity 3: Measuring Concurrency
	1.2 Measuring concurrency
	Questions

