
Lab2 - Intel® Xeon Phi™ Programming

In this lab you will build and run a 1D linear convolution algorithm.
1. Building and running on the Host

• Build the application, enabling OpenMP:

 $ icpc –openmp native.cpp –xavx –o native

• Run the application on the host.

$./native input kernel /dev/null
elements of input file: 100000000
elements of kernel file: 1024
Number of OpenMP threads used: 32
Elapsed time = 0.453822 seconds

Note: The first two arguments are inputs to the program, the final argument is where the
output is stored. Since we are not really interested in the values of the output, We send the
output to /dev/null.

 Questions:

• How many threads were used at runtime?
• Can you explain, by looking at native.cpp how the number of threads being used is

controlled?

2. Building and running on MIC
• Build the application:

 $ icpc –openmp native.cpp –o native_mic –mmic

• SSH to the MIC card and run the application:

$ ssh mic0
$./native_mic input kernel /dev/null
elements of input file: 100000000
elements of kernel file: 256
Number of OpenMP threads used: 228
Elapsed time = 1.154362 seconds

Questions:

• Does the code run faster than the host version? If not, can you suggest why it might be
slower than you expected?

• What’s the purpose of the macro __MIC__. in native.cpp?

2. Building an Offload Enabled Version
There are two different offload models – explicit & implicit –in this lab we’ll use the explicit method.

In the explicit offload model, code has been is added to the application to which code and data is
offloaded to the MIC card.

Naïve Implementation
• Open the file offload_explicit.cpp and compare it with native.cpp . You should

notice:
o To meet the requirement to stream chunks of data to the coprocessor the input and

output is partitioned. The chunk size can be modified via the variable chunkSize to
find the sweet spot between overhead of transferring data and a sufficient workload size
on the coprocessor.

o The function convolve(…) has been declared with __declspec(target(mic))
to make it available for the coprocessor. This function will be the only part that’s
compiled for the coprocessor. Note that it is also available on the host in case no
coprocessor is found!

o We offload the initialization of the OpenMP* runtime by using #pragma offload
target(mic). In return we get the number of available threads on the coprocessor.

o While iterating over the different chunks of workload, each call to convolve(…) is
offloaded by using #pragma offload target(mic). The memory to transfer to
the coprocessor (input & kernel) is specified, as well as the returned data
(output). Note that both input and output have the same size (chunkSize). A
requirement of the 1D linear convolution is to continue with the trailing kernelSize
– 1 elements. This is why those elements are copied in the beginning of input for the
next chunk to compute.

• Now build and run the offload example:
• $ icpc –openmp offload_explicit.cpp -o offload_explicit 

 -offload-option,mic,compiler,”-O3”

$./offload_explicit input kernel /dev/null
elements of input file: 100000000
elements of kernel file: 256
Number of OpenMP threads used: 224
Elapsed time = 3.436618 seconds

Questions:

• Can you guess what the -offload-option option is doing?
• How do you think this code will behave when there is no coprocessor present?

Hint - You can simulate this condition by recompiling with option –no-offload

Advanced Implementation
In the previous example the data first offloaded, and then the computation took place: it’s strictly
sequential.

A much better approach would be to interleave transfer of data with computation

• Look at offload_explicit_v2.cpp. You should see that:
o The buffer for input data has been doubled (input1 & input2). This is required

for the coprocessor to work with one buffer while the other is filled. Note that the
host side will stay with using input1; the mapping to either input1 or input2
for the coprocessor takes place with the into clause.

o Allocation and de-allocation of the buffers is done only once, in the beginning and
end respectively. Can you spot what controls the conditional allocation?

o The asynchronous transfer and population of buffers uses signals.
o The primary loop already expects that the first data chunk has been transferred. So,

a small bootstrapping is required in front of the loop to ensure data is transferred
already.

o There is additional code to handle the last chunk of data transferred .

• Now build and run the example:

$ icpc –openmp offload_explicit_v2.cpp -o offload_explicit_v2
$./offload_explicit_v2 input kernel output
elements of input file: 100000000
elements of kernel file: 256
Number of OpenMP threads used: 224
Elapsed time = 1.651928 seconds

Observing Transfers
You can also observe the communication (data transfer) between host and coprocessor by setting
the environment variable $OFFLOAD_REPORT=x (level of reports x: 1, 2 or 3).

• Enable the reporting for the two different explicit offload versions:

$ OFFLOAD_REPORT=1 ./offload_explicit input kernel /dev/null
…
$ OFFLOAD_REPORT=1 ./offload_explicit_v2 input kernel /dev/null
…

Can you identify the different offloads?

	1. Building and running on the Host
	2. Building and running on MIC
	2. Building an Offload Enabled Version
	Naïve Implementation
	Advanced Implementation
	Observing Transfers

