
Intel Software Tools

Stephen Blair-Chappell

Intel Compiler Labs

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Parallel Programming with Parallel Studio XE
Stephen Blair-Chappell & Andrew Stokes

Wiley ISBN: 9780470891650
Part I: Introduction Part II: Using Parallel Studio XE Part III :Case Studies
1: Parallelism Today 4: Producing Optimized Code 13: The World’s First Sudoku ‘Thirty-Niner’
2: An Overview of Parallel Studio XE 5: Writing Secure Code 14: Nine Tips to Parallel Heaven
3: Parallel Studio XE for the Impatient 6: Where to Parallelize 15: Parallel Track-Fitting in the CERN Collider
 7: Implementing Parallelism 16: Parallelizing Legacy Code
 8: Checking for Errors
 9: Tuning Parallelism
 10: Advisor-Driven Design
 11: Debugging Parallel Applications
 12:Event-Based Analysis with VTune Amplifier XE

2

8/2/2012

This training is based on the
following…

http://www.amazon.co.uk/gp/reader/0470891653/ref=sib_dp_pt

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Speedup using parallelism

3

8/2/2012

Parallel Code

In
sp

ec
to

r
X

E

M
em

or
y

Th
re

ad
s

Debug

co
n

cu
rr

en
cy

Tune

A
m

pl
ifi

er
 X

E

Lo
ck

s
&

 w
ai

ts

A
m

pl
ifi

er
 X

E

H
ot

sp
ot

Analyze
E

B
S

 (X
E

 o
n

ly
)

Four Step Development

C
om

po
se

r
X

E
 Compiler

Libraries

Implement

MKL

Cilk Plus

TBB

OpenMP

IPP

1
2

3

4

Chapter 6
Where to Parallelize

Chapter 7
Implementing

Parallelism

Chapter 8
Checking for Errors

Chapter 9
Tuning Parallelism

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

4

Steps in moving from Serial
to Parallel

Analyze

Implement

Debug

Tune

Step 1 : Look for
hotspots in application.
These are best candidates
to make parallel

Step 2: Add parallel
constructs into source
code

Step 3: Check if any
parallel-type errors have
been introduced

Step 4: Tune the parallel
application.

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

5

8/2/2012

Key Questions - Analyze

 Is my program parallel?

 Where is the best place to parallelise my program?

 How can I get my program to run faster?

 What’s the expected speedup?

Analyze

Implement

Debug

Tune

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Four Different Ways to Find the
Hotspots

1. Using Intel compiler’s loop profiler &
profile viewer

2. Using the compiler’s Auto-parallelizer

3. Performing a Survey with Advisor

4.Using Amplifier XE

6

8/2/2012

Analyze

Implement

Debug

Tune

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Using the loop profiler

7

8/2/2012

icl /Qprofile-functions
/Qprofile-loops:all prog.c

prog.exe Function
profile

 Loop

Profile

Function
profile

 Loop

Profile

Compile to add
instrumentation 1

Run the
Program 2

View the
Results 3

Loopprofileviewer <filename>

exe

Analyze

Implement

Debug

Tune

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Using the Auto-Parallelizer

8

8/2/2012

icl /O2 /Qipo /Qparallel
/Qpar-report2 prog.c Results

(20) remark: LOOP WAS AUTO-
PARALLELIZED
(67) remark: loop was not
parallelized: existence of parallel
dependence*(see note)

Compile enabling auto
parallelism and reports 1

Look at
the
results

2

Add your own parallel code
where auto-vectorizer was
successful

3

20: cilk_for(int=0;i<100;i++)
21:{
22: / etc
.
45:}

icl /O2 /Qipo prog.c

Rebuild without auto
parallelism 4

* Note: You can also look at
the loops that could not be
parallelized. It might be
worth fixing the problem
reported. Add the option
/Qguide may give you extra
information.

Analyze

Implement

Debug

Tune

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel Parallel Advisor – Survey Target
Focuses developers attention to
the hot call trees and loops as
locations to experiment with

parallelism

Top down list of call
sites, lines, & loops

Developers can drill into
the source code

7/1/2010

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Use Amplifier XE

10

8/2/2012

Analyze

Implement

Debug

Tune

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Advantages & Disadvantages of
different hotspot methods

11

Method Pro Con
Loop Profiler • Easy to use

• All you need is in compiler
package

• Profiles loops as well as
functions

• Very basic
• Code needs instrumenting
• No call tree
• No comparison function

Auto-
parallelizer

• Easy to use
• Quick way of spotting right

place
• Comparison relatively easy

• Easily confounded
• IPO obscures loops

Amplifier XE • Small overhead
• Easy to traverse call stack
• No special build needed
• Multiple options for collection

\viewing
• Results can be compared

• (No loop profiler)
• No precise call graph

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

12

8/2/2012

Profile the System Profile Applications

Architectural Analysis

VTune Amplifier XE

Kernel Mode

User Mode

Works on
• Intel
• non-Intel
• More

overhead
than
lightweight
hotspots

Works only on
• Intel

INTEL CONFIDENTIAL

13

13

Hands-on Lab

8/2/2012

Lab 1 , Step 1
Hotspots Analysis
Activity 6-1 & 6-4

C:\CLASSFILES\Lab Sources\IPS Book\Chapter 6

http://www.amazon.co.uk/gp/reader/0470891653/ref=sib_dp_pt

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

14

8/2/2012

Explanation of
Compiler

Flags

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

15

8/2/2012

/Od (-O0) Building with Optimisation
Disabled

• Code is not re-ordered

• ‘Dead code’ is not eliminated

• Improves visibility when using profiling tools.
– You should use this option when looking for threading errors!

• The code is usually much s l o w e r 

• The binaries are usually much Bigger 

• /Zi (-g) produce debug information (can be used with /O1,

/O2, /O3 etc).

 Step 1

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

16

8/2/2012

/O1 (-O1) OPTIMIZE FOR SPEED AND SIZE

• This option is very similar to /O2 except that it
omits optimizations that tend to increase object

code size, such as the in-lining of functions.
Generally useful where memory paging due to large
code size is a problem, such as server and
database applications.

•Auto-vectorization is not turned
on, even if it is invoked individually by its fine
grained switch /Qvec.

16

Step 2

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

17

8/2/2012

/O2 (-O2) OPTIMIZE FOR MAXIMUM SPEED.

• This option will create faster code in most
cases.

• Optimizations include
– scalar optimizations
– inlining and some other
– Inter-procedural optimizations between

functions/subroutines in the same source file
– vectorization
– limited versions of a few other loop optimizations such as

loop versioning and unrolling that facilitate vectorization.

17

Step 2

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

18

8/2/2012

/O3 (-O3) OPTIMIZES FOR FURTHER SPEED
INCREASES.

• This includes all the /O2 optimizations, together
with other High Level Optimizations.

• These high level optimizations include more
aggressive strategies such as:
– scalar replacement,
– data pre-fetching,
– loop optimization,
– among others.

18

Step 2

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Interprocedural Optimisation

• /Qipo (Linux –ipo)

• Call to functions are
replaced by the body of
the function (aka
inlining)

• Can lead to loss of
symbol information
(unhelpful when
debugging)

• /Ob0, /Ob1, /Ob2
turns of inlining. (Linux
–inline-level=0 ,1,2

19

8/2/2012

Intermediate
language
(mock) objects

Executable

f2.c

f1.c IP
Compile

f2.obj

f1.obj

IP
Compile

IPO
Compile

Link f.exe

.lib

Source files

libraries
.lib .lib

Step 4

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

20

Steps in moving from Serial
to Parallel

Analyze

Implement

Debug

Tune

Step 1 : Look for
hotspots in application.
These are best candidates
to make parallel

Step 2: Add parallel
constructs into source
code

Step 3: Check if any
parallel-type errors have
been introduced

Step 4: Tune the parallel
application.

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Key Questions – Implement

What’s the best method?

How much programming effort is
required?

Is my code still working?

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Language to help parallelism

Intel® Cilk™ Plus

 OpenMP

 Intel® Threading Building Blocks

 Intel® MPI

 Fortran Coarrays

 OpenCL

 Native Threads

22

8/2/2012

Parallel Code

cilk_for (int i = 0; i < max_row; i++)
{
 for (int j = 0; j < max_col; j++)
 {
 p[i][j] = mandel(complex(scale(i), scale(j)));
 }
}

#pragma omp parallel for
for(i=1;i<=4;i++) {
 printf(“Iter: %d”, i);
}

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Structured Parallel Programming
Michael McCool, James Reinders, Arch Robison
Publisher: Morgan Kaufmann (31 July 2012), ISBN-10: 0124159931
 Programming is now parallel programming. Much as
structured programming revolutionized traditional serial
programming decades ago, a new kind of structured
programming, based on patterns, is relevant to parallel
programming today. Parallel computing experts and
industry insiders Michael McCool, Arch Robison, and James
Reinders describe how to design and implement
maintainable and efficient parallel algorithms using a
pattern-based approach. They present both theory and
practice, and give detailed concrete examples using
multiple programming models. Examples are primarily
given using two of the most popular and cutting edge
programming models for parallel programming: Threading
Building Blocks, and Cilk Plus. These architecture-
independent models enable easy integration into existing
applications, preserve investments in existing code, and
speed the development of parallel applications. Examples
from realistic contexts illustrate patterns and themes in
parallel algorithm design that are widely applicable
regardless of implementation technology. This title provides
the patterns-based approach that offers structure and
insight that developers can apply to a variety of parallel
programming models. It develops a composable, structured,
scalable, and machine-independent approach to parallel
computing. It includes detailed examples in both Cilk Plus
and the latest Threading Building Blocks, which support a
wide variety of computers.

23

8/2/2012

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Introduction to Concurrency in Programming Languages
Matthew J. Sottile, Timothy G. Mattson, Craig E. Rasmussen
Publisher: Chapman and Hall/CRC (7 Oct 2009). ISBN:ISBN-10: 1420072137

Exploring how concurrent programming can be assisted by language-
level techniques, Introduction to Concurrency in Programming
Languages presents high-level language techniques for dealing with
concurrency in a general context. It provides an understanding of
programming languages that offer concurrency features as part of
the language definition.

The book supplies a conceptual framework for different aspects of
parallel algorithm design and implementation. It first addresses the
limitations of traditional programming techniques and models when
dealing with concurrency. The book then explores the current state
of the art in concurrent programming and describes high-level
language constructs for concurrency. It also discusses the historical
evolution of hardware, corresponding high-level techniques that were
developed, and the connection to modern systems, such as multicore
and manycore processors. The remainder of the text focuses on
common high-level programming techniques and their application to
a range of algorithms. The authors offer case studies on genetic
algorithms, fractal generation, cellular automata, game logic for
solving Sudoku puzzles, pipelined algorithms, and more.

Illustrating the effect of concurrency on programs written in familiar
languages, this text focuses on novel language abstractions that truly
bring concurrency into the language and aid analysis and compilation
tools in generating efficient, correct programs. It also explains the
complexity involved in taking advantage of concurrency with regard
to program correctness and performance.

24

8/2/2012

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

25

Patterns for Parallel Programming

Details a pattern language for parallel
algorithm design

Examples in MPI, OpenMP and Java
are given

Represents the author's hypothesis for
how programmers think about parallel
programming
 Patterns for Parallel Programming, Timothy G. Mattson,
Beverly A. Sanders, Berna L. Massingill, Addison-Wesley,
2005, ISBN 0321228111

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel Threading Building Blocks
James Reinders,
O'Reilly Media; 1 edition (19 July 2007) ISBN-10: 0596514808
 Multi-core chips from Intel and AMD offer a
dramatic boost in speed and responsiveness,
and plenty of opportunities for multiprocessing
on ordinary desktop computers. But they also
present a challenge: More than ever,
multithreading is a requirement for good
performance. This guide explains how to
maximize the benefits of these processors
through a portable C++ library that works on
Windows, Linux, Macintosh, and Unix systems.
With it, you'll learn how to use Intel Threading
Building Blocks (TBB) effectively for parallel
programming -- without having to be a
threading expert.

Written by James Reinders, Chief Evangelist of
Intel Software Products, and based on the
experience of Intel's developers and customers,
this book explains the key tasks in
multithreading and how to accomplish them
with TBB in a portable and robust manner. With
plenty of examples and full reference material,
the book lays out common patterns of uses,
reveals the gotchas in TBB, and gives important
guidelines for choosing among alternatives in
order to get the best performance.

26

8/2/2012

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Scope of Chapter 6

27

8/2/2012

Programmatically

Libraries MKL
IPP

OpenMP

TBB

Cilk Plus

Automatically
Use /Qparallel
and /Qguide

options

Native Threads

Ea
se

 o
f
U

se

Easiest

More
Difficult

Covered in this chapter

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

28

What Is OpenMP?
Portable, shared-memory threading API

–Fortran, C, and C++
–Multi-vendor support for both Linux and

Windows

Standardizes task & loop-level parallelism

Supports coarse-grained parallelism

Standardizes ~ 20 years of compiler-
directed threading experience

Combines serial and parallel code in single
source
• Excellent support of “incremental” parallelization
• No need for serial and parallel source code releases

http://www.openmp.org
Current spec is OpenMP 4.0

 (combined C/C++ and Fortran)

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

29

Programming Model

Fork-Join Parallelism:
• Master thread spawns a team of threads as needed
• Parallelism is added incrementally: that is, the sequential program

evolves into a parallel program

Parallel Regions

Master
Thread

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

30

omp for Construct

Threads are assigned an
independent set of
iterations

Threads must wait at the
end of work-sharing
construct

#pragma omp parallel

#pragma omp for

Implicit barrier

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

i = 12

// assume N=12
#pragma omp parallel
#pragma omp for
 for(i = 1, i < N+1, i++)
 c[i] = a[i] + b[i];

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

31

Advantage of Parallel Sections

Independent sections of code can execute
concurrently – reduce execution time

Serial Parallel

#pragma omp parallel sections
{
 #pragma omp section
 phase1();
 #pragma omp section
 phase2();
 #pragma omp section
 phase3();
}

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

32

The Private Clause

Reproduces the variable for each task
– Variables are un-initialized; C++ object is default

constructed
– Any value external to the parallel region is

undefined
void* work(float* c, int N) {
 float x, y; int i;
 #pragma omp parallel for private(x,y)
 for(i=0; i<N; i++) {
 x = a[i]; y = b[i];
 c[i] = x + y;
 }
}

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

33

Schedule Clause Example

#pragma omp parallel for schedule (static, 8)
 for(int i = start; i <= end; i += 2)
 {
 if (TestForPrime(i)) gPrimesFound++;
 }

Iterations are divided into chunks of 8
• If start = 3, then first chunk is

i={3,5,7,9,11,13,15,17}

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Implementing Parallelism

• Parallelizing loops

• Parallelizing sections and functions

• Parallelizing recursive functions

• Parallelizing pipelined applications

• Parallelizing linked lists

34

8/2/2012

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

The Beauty of Lambda

35

8/2/2012

[capture_mode] (formal_parameters) -> return_type {body}

Can omit if there are
no parameters and
return type is implicit.

Can omit if return
type is void or code
is “return expr;”

[&] ⇒ by-reference
[=] ⇒ by-value
[] ⇒ no capture

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

An example lambda function

36

 1: #include <iostream>
 2: #include <algorithm>
 3: using namespace std;
 4: int main()
 5: {
 6: char Message[]="The Beauty of Lambda!";
 7:
 8: int NumSpaces = 0;
 9: for_each(
10: Message, //
11: Message + sizeof(Message),
12: [&NumSpaces] (char c) { if (c == ' ') NumSpaces++;}
13:);
14: cout << "There are " << NumSpaces <<" spaces in: '"<<
15: Message << "'" <<endl;
16: }

STL template for_each
template<class InputIterator, class Function> Function for_each(InputIterator _First, InputIterator _Last, Function _Func);

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Parallelizing for loops

37

8/2/2012

#include < cilk/ cilk.h >
cilk_for (int i = 0; i<100; i++)
{
 work(i);
}

#pragma omp parallel
{
 #pragma omp for
 for (int i = 0; i<100; i++)
 {
 work(i);
 }
} // end of parallel region

#include < tbb.h >
parallel_for (size_t(0), 100,
 [=](size_t i) {
 work(i);
 } // end of lambda code
); // end of parallel _for

Key

Cilk Plus

TBB

OpenMP

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Parallelizing while loops

38

8/2/2012

#pragma omp parallel
{
 #pragma omp single nowait
 {
 int counter = 0;
 while(counter < 10)
 {
 counter++;
 #pragma omp task firstprivate(counter)
 {
 work(counter);
 } } } } // implicit barrier

int j = 0;
while (j < 100)
{
 cilk_spawn Prime(Pri);
 j + +;
}

#include < tbb.h >
#include < vector >
void Work(int Val)
{ // do some work here}

Func()
{
 std:: vector < int >
 s;
 s.push_back(0); // etc
tbb:: parallel_do
(
 s.begin(), s.end(),
 [&](int Val) { Work(Val);}
);
}

Key

Cilk Plus

TBB

OpenMP

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Parallelizing sections and functions

39

8/2/2012

#include < cilk/cilk.h >
int main()
{
 cilk_spawn Work1();
 cilk_spawn Work2();
 Work3();
 cilk_sync
}

int main()
{
 #pragma omp parallel sections
 {
 #pragma omp section
 Work1();
 #pragma omp section
 Work2();
 #pragma omp section
 Work3();
 }
}

#include < tbb/tbb.h >
int main()
{
 tbb:: parallel_invoke(
 []{ Work1();},
 []{ Work2();},
 []{ Work3();}
);
}

Key

Cilk Plus

TBB

OpenMP

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Parallelizing recursive functions

40

8/2/2012

#include < cilk/ cilk.h >
void Work(int i)
{
 if(i > 4) return;
 printf(" S% d\ n", i);
 cilk_spawn Work(i +
1);
 printf(" E %d\ n", i);
}

int main()
{
 int i = 0;
 Work(i);
}

void Work(int i)
{
 if(i > 4) return;
 #pragma omp task firstprivate(i)
 {
 printf(" S% d\ n", i);
 Work(i + 1);
 printf(" E %d\ n", i);
 }
 }

int main()
{
 int i = 0;
 #pragma omp parallel
 #pragma omp single
 {
 Work(i);
 }
}

Key

Cilk Plus

TBB

OpenMP

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Parallelizing recursive functions

41

8/2/2012

#include < stdio.h >
#include < tbb/tbb.h >
tbb:: task_group g;
void Work(int i)
{
 if(i > 4) return;
 g.run(
 [=]{ // spawn a task
 printf(" S% d\ n", i);
 Work(i + 1);
 printf(" E %d\ n", i);
 }
);
}

int main()
{ int i = 0;
 Work(i);
 g.wait(); // wait for tasks to complete
}

Key

Cilk Plus

TBB

OpenMP

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Parallelizing pipelined functions

42

8/2/2012

int main()
{
 FILE *pF = fopen(".\\ Test.Data"," r");
 FILE *pO = fopen(" Out.Data"," w");
 for (int j=0;j<LINE_LENGTH;j++)
 fscanf(pF,"% d ",& LineIn[0][j]);
 #pragma omp parallel
 {
 for (int i = 0; i < NUM_LINES; i++)
 {
 // Pipeline STAGE 1
 #pragma omp single nowait
 {
 // start reading the next line
 // Don't read beyond end
 if(i < NUM_LINES-1);
 {
 for (int j=0;j<LINE_LENGTH;j++)
 fscanf(pF,"% d",&LineIn[i+1][
j]);
 }
 }

 // Pipeline STAGE 2
 #pragma omp for schedule(dynamic)
 for (int j = 0; j<LINE_LENGTH;j++)
 LineOut[i][j]=
 sqroot((float)LineIn[i][j]);

 //Pipeline STAGE 3
 #pragma omp single nowait
 {
 for (int j=0; j<LINE_LENGTH;j++)
 fprintf(pO,"% f ", LineOut[i][j]);
 fprintf(pO,"\ n");
 }
 }
 }
 fclose(pF);
 fclose(pO);
 return 0;
}

Key

Cilk Plus

TBB

OpenMP

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Parallelizing pipelined functions

43

8/2/2012

int main()
{
 int i = 0;
 int ntokens = 24;
 FILE *pF = fopen(".\\ Test.Data"," r");
 FILE *pO=fopen("Data"," w");
 parallel_pipeline
 (
 ntokens,
 tbb::make_filter < void, int >
 (
 filter:: serial_in_order, [& i,& pFile]
 (flow_control& fc)-> int
 {
 if (i < NUM_LINES)
 {
 for(int j=0;j<LINE_LENGTH;j++)
 fscanf(pF,"% d",&LineIn[i][j]);
 return i++;
 }
 else fc.stop();
 }
)

& tbb:: make_filter< int, int >
 (filter:: serial_in_order, [](int i)->int
 {
 parallel_for
 (size_t(0), (size_t) LINE_LENGTH,
 [&](size_t j)
 {
 LineOut[i][j]=
 sqroot((float) LineIn[i][j]);
 }
);
 return i;
 }
)
& tbb:: make_filter < int, void >
 (filter:: serial_in_order,[& pO](int i)
 {
 for (int j=0; j<LINE_LENGTH; j++)
 fprintf(pO,"% f ", LineOut[i][j]);
 fprintf(pOutputFile,"\ n");
 }
)
);
}

Key

Cilk Plus

TBB

OpenMP

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Parallelizing Linked Lists

44

8/2/2012

void RunThoughLinkedList()
{
 #pragma omp parallel {
 #pragma omp single{
 node *pHead = Head;
 while(pHead != NULL)
 {
 #pragma omp task firstprivate(pHead)
 {
 Work(pHead);
 }
 pHead = pHead->next;
} } } }

#include < cilk/ cilk.h >
void RunThoughLinkedList()
{
 node *pHead = Head;
 while(pHead != NULL)
 {
 cilk_spawn Work(pHead);
 pHead = pHead-> next;
 } }

void RunThoughLinkedList() {
 tbb:: task_group g;
 node *pHead = Head;
 while(pHead != NULL)
 {
 g.run(
 [=] {
 Work(pHead);
 }
);
 pHead = pHead->next;
 }
 g.wait();
}

Key

Cilk Plus

TBB

OpenMP

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

45

Steps in moving from Serial
to Parallel

Analyze

Implement

Debug

Tune

Step 1 : Look for
hotspots in application.
These are best candidates
to make parallel

Step 2: Add parallel
constructs into source
code

Step 3: Check if any
parallel-type errors have
been introduced

Step 4: Tune the parallel
application.

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

46

8/2/2012

Key Questions - Verify

Is the parallelism correct?

Do I have deadlocks or data races?

Do I have memory errors?

Does my program still work as intended?

Analyze

Implement

Debug

Tune

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Ways to Find your Parallel Errors

1. Use Inspector XE

2. Use Advisor

3. Use Intel-provided Data Race Detector in
GDB

47

8/2/2012

Analyze

Implement

Debug

Tune

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Programming
Errors

Dynamic vs Static Error Detection

48

Security
Errors

Detect with
Static
Security
Analysis

Detect with
Dynamic Analysis
and Debugging

Memory
Errors

Threading
Errors

Memory
Errors

Threading
Errors

Module
Inconsistency

Dangerous
Usage

Dead Code

Intel Compiler
 and
Intel Inspector XE

Intel Inspector XE
 and\or
Data Race Detector in GDB

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Inspector XE – Threading Errors &
warnings

• Data Races

• Deadlocks

• Lock hierarchy violations

• Potential privacy infringements

• Other threading info

49

8/2/2012

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Inspector XE – Memory Errors &
warnings

• Memory leaks

• Bad use of memory allocation \ de-allocation

• Invalid memory access

50

8/2/2012

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

5/26
/201
4 51

Inspector XE - Standalone GUI

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Problem State Lifecycle
Makes problems easier to manage

State Description
New Detected by this run

Not Fixed Previously seen error detected by this run
Not a Problem Set by user – tool will not change

Confirmed Set by user – tool will not change

Fixed Set by user
Regression Error detected with previous state of “Fixed”

52

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Suppressions Manage False Errors

Suppressions are saved in one or more files

Tool suppresses all files from specified folder(s)

Private & Public suppression folders

Copy a suppression to public folder to promote

Suppressions
are marked
(shown) or
hidden entirely

Be specific or
select group of
similar problems

INTEL CONFIDENTIAL

54

54

Hands-on Lab

8/2/2012

C:\CLASSFILES\Lab Sources\IPS Book\Chapter 8

Lab 1 , Step 3
Debugging Parallel Errors
Activity 8-1 & 8-2

http://www.amazon.co.uk/gp/reader/0470891653/ref=sib_dp_pt

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

55

5/26/2014

Integrated Debugger Support

• Break into debugger
– Analysis can stop when it

detects a problem
– User is put into a standard

debugging session
• Windows*

– Microsoft* Visual Studio
Debugger

• Linux*
– gdb
– Intel® Debugger

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

56

5/26/2014

Analyze Memory Growth
Transactional Applications

Set Start Point

Set End Point

Memory Growth
Problem Set

Code location for each
block of memory that was
allocated but not de-
allocated during the time
period

During Analysis:

Analysis Results:

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

57

5/26/2014

On-demand leak detection
Detect memory leaks before application exits

Memory Leak
shown during run time

• Check code regions between points
 'A' and 'B‘ for leaks
• Check daemon processes for leaks
• Check crashing processes for leaks

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Inspector APIs for memory growth
and leak detection.

58

8/2/2012

API Purpose
__itt_heap_growth memory growth detection
__itt_heap_leaks on-demand leak detection
__itt_heap_reset_detection reset the growth/leak baseline
__itt_heap_record generate a report

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

59

5/26/2014

Child Program Analysis

Running a top level script is the norm for some Linux apps.
For such cases, a different Child Program can be
analyzed (not necessarily the app launched by
Inspector XE).

Limitations:
– Only the first instance of Child Program will be analyzed

by Inspector XE analysis.
– Child Program name is the one shown in Windows Task

Manager or the name shown in “ps –aef” on Linux.
– Multi-process analysis is not supported for .NET

applications.

Child Program Analysis is very useful in multi-process scenario

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

60

5/26/2014

Command Line Interface

• inspxe-cl is the command line:
– Windows: C:\Program Files\Intel\Inspector XE

\bin[32|64]\inspxe-cl.exe

– Linux: /opt/intel/inspector_xe/bin[32|64]/inspxe-cl

• Help:
inspxe-cl –help

• Set up command line with GUI

• Command examples:
inspxe-cl -collect-list

inspxe-cl –collect ti2 -- MyApp.exe

inspxe-cl –report problems

Great for regression analysis – send results file to developer
Command line results can also be opened in the GUI

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

61

5/26/2014

Reporting

To generate a report:
inspxe-cl –R=<report-type> <results directory name>

Sample commands:
inspxe-cl –report-list
inspxe-cl -report=summary
inspxe-cl -report=problems

Example:
cd /home/user/testProgram/r000mi
cd ..
inspxe-cl -R=observations r000mi

Report generation is very convenient to use from command line.

If you have time,
re-run the inspection

from the command line

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

62

Steps in moving from Serial
to Parallel

Analyze

Implement

Debug

Tune

Step 1 : Look for
hotspots in application.
These are best candidates
to make parallel

Step 2: Add parallel
constructs into source
code

Step 3: Check if any
parallel-type errors have
been introduced

Step 4: Tune the parallel
application.

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

63

8/2/2012

Key Questions -Tune

Do my tasks do equal amounts of work?

Is my application scalable?

Is the threading running efficiently?

Analyze

Implement

Debug

Tune

Software & Services Group, Developer Products Division
Copyright © 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. 64

Intel® VTune™ Amplifier XE
Performance Profiler

64

 Where is my application…

 Spending Time? Wasting Time? Waiting Too Long?

• Focus tuning on
functions taking time

• See call stacks
• See time on source

• See cache misses on
your source

• See functions sorted by
of cache misses

• See locks by wait time
• Red/Green for CPU
utilization during wait

• Windows & Linux
• Low overhead
• No special recompiles

Advanced Profiling For Scalable Multicore Performance

http://software.intel.com/en-us/articles/optimization-notice/

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Amplifier XE – ‘Parallel’ Analysis
Types

• Hotspots

• Concurrency

• Locks and waits
You can swap between the different analysis types –
but not all data is captured in each analysis type

65

8/2/2012

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

66

8/2/2012

Profile the System Profile Applications

Architectural Analysis

VTune Amplifier XE

Kernel Mode

User Mode

Works on
• Intel
• non-Intel
• More

overhead
than
lightweight
hotspots

Works only on
• Intel

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

67

Intel® VTune™ Amplifier XE
Get a quick snapshot

4 cores

CPU
Usage

Thread
Concurrency

Frame
Rate

67

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

68

Intel® VTune™ Amplifier XE
Identify hotspots

Hottest Call Stack Hottest Functions

Quickly identify what is important

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

69

Intel® VTune™ Amplifier XE
Identify threading inefficiency

Coarse Grain
Locks

High Lock
Contention

Load
Imbalance

Low
Concurrency

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

70

Intel® VTune™ Amplifier XE
Find Answers Fast

Double Click Function
to View Source

Adjust Data Grouping

… (Partial list shown)

Filter by Module &
Other Controls

Filter
by Timeline Selection
(or by Grid Selection)

Click [+] for Call Stack

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

71

Optional: Use API to mark frames and user tasks

Optional: Add a mark during collection

CPU Time

Hovers:

Transitions
Hotspots Lightweight Hotspots Locks & Waits

Intel® VTune™ Amplifier XE
Timeline Visualizes Thread Behavior

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

72

Intel® VTune™ Amplifier XE
See Profile Data On Source / Asm

Time on Source / Asm

Quickly scroll to hot spots.

Click jump to scroll Asm

Quick Asm navigation:
Select source to highlight Asm

Right click for instruction
reference manual

Intel® VTune™ Amplifier XE

INTEL CONFIDENTIAL

73

73

Hands-on Lab

8/2/2012

C:\CLASSFILES\Lab Sources\IPS Book\Chapter 9

Lab 1 , Step 4
Tuning
Activity 9-1,9-2 & 9-3

http://www.amazon.co.uk/gp/reader/0470891653/ref=sib_dp_pt

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

74

8/2/2012

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Concurrency and Performance of Attempt 1

75

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Zoom-in on time line shows reason
for poor concurrency

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Concurrency and Performance of Attempt 2

77

If you have time,
compare two sets of

Results from the
lab you

have just finished

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk
are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimer & Optimization Notice

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

78

8/2/2012 78

	Intel Software Tools
	Slide Number 2
	Speedup using parallelism
	Slide Number 4
	Slide Number 5
	Four Different Ways to Find the Hotspots
	Using the loop profiler
	Using the Auto-Parallelizer�
	Intel Parallel Advisor – Survey Target
	Use Amplifier XE
	Advantages & Disadvantages of different hotspot methods
	Slide Number 12
	Hands-on Lab
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Interprocedural Optimisation
	Slide Number 20
	Key Questions – Implement
	Language to help parallelism
	Structured Parallel Programming�Michael McCool, James Reinders, Arch Robison�Publisher: Morgan Kaufmann (31 July 2012), ISBN-10: 0124159931 �
	Introduction to Concurrency in Programming Languages�Matthew J. Sottile, Timothy G. Mattson, Craig E. Rasmussen �Publisher: Chapman and Hall/CRC (7 Oct 2009). ISBN:ISBN-10: 1420072137
	Patterns for Parallel Programming
	Intel Threading Building Blocks�James Reinders, �O'Reilly Media; 1 edition (19 July 2007) ISBN-10: 0596514808 �
	Scope of Chapter 6
	What Is OpenMP?
	Programming Model
	omp for Construct
	Advantage of Parallel Sections
	The Private Clause
	Schedule Clause Example
	Implementing Parallelism
	The Beauty of Lambda
	An example lambda function
	Parallelizing for loops
	Parallelizing while loops
	Parallelizing sections and functions
	Parallelizing recursive functions
	Parallelizing recursive functions
	Parallelizing pipelined functions
	Parallelizing pipelined functions
	Parallelizing Linked Lists
	Slide Number 45
	Slide Number 46
	Ways to Find your Parallel Errors
	Dynamic vs Static Error Detection
	Inspector XE – Threading Errors & warnings
	Inspector XE – Memory Errors & warnings
	Inspector XE - Standalone GUI
	Problem State Lifecycle�Makes problems easier to manage
	Suppressions Manage False Errors
	Hands-on Lab
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Inspector APIs for memory growth and leak detection.
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Intel® VTune™ Amplifier XE�Performance Profiler
	Amplifier XE – ‘Parallel’ Analysis Types
	Slide Number 66
	Intel® VTune™ Amplifier XE �Get a quick snapshot
	Intel® VTune™ Amplifier XE �Identify hotspots
	Intel® VTune™ Amplifier XE �Identify threading inefficiency
	Intel® VTune™ Amplifier XE �Find Answers Fast
	Intel® VTune™ Amplifier XE �Timeline Visualizes Thread Behavior
	Intel® VTune™ Amplifier XE �See Profile Data On Source / Asm
	Hands-on Lab
	Slide Number 74
	Concurrency and Performance of Attempt 1
	Zoom-in on time line shows reason for poor concurrency
	Concurrency and Performance of Attempt 2
	Slide Number 78
	Slide Number 79

