Intel Software Tools

Stephen Blair-Chappell

Intel Compiler Labs

This training Is based on the
following...

Parallel Programming with Parallel Studio XE
Stephen Blair-Chappell & Andrew Stokes

Wiley ISBN: 9780470891650

Part I: Introduction Part Il: Using Parallel Studio XE Part 111 :Case Studies

1: Parallelism Today 4: Producing Optimized Code 13: The World’s First Sudoku ‘Thirty-Niner’

2: An Overview of Parallel Studio XE 5: Writing Secure Code 14: Nine Tips to Parallel Heaven

3: Parallel Studio XE for the Impatient 6: Where to Parallelize 15: Parallel Track-Fitting in the CERN Collider
7: Implementing Parallelism 16: Parallelizing Legacy Code
8: Checking for Errors
9: Tuning Parallelism

10: Advisor-Driven Design
11: Debugging Parallel Applications
12:Event-Based Analysis with VTune Amplifier XE

Parallel
Programming
with Intel” Parallel Studio XE

2

Copyright© 2012, Intel Corporation. All rights reserved.
8/2/2012 *Other brands and names are the property of their respective owners.

http://www.amazon.co.uk/gp/reader/0470891653/ref=sib_dp_pt

Speedup using parallelism Parallel Code

Chapter 6

Where to Parallelize

o -

Chapter 7

Implementing
Parallelism

Chapter 8
Checking for Errors

]

EBS (XE only)

— N
Tuning Parallelism

Libraries

Amplifier XE

[PP

Inspector XE
Threads
Memory

Four Step Development

concurrency
Locks & waits

Amplifier XE

3

Copyright© 2012, Intel Corporation. All rights reserved.
8/2/2012 *Other brands and names are the property of their respective owners.

Steps In moving from Serial
to Parallel---.__

. "~.Step 1 : Look for

! Analyze hotspots in application.

N _/These are best candidates
~< -~ to make parallel

~

Implement Step 2: Add parallel
constructs into source

code

Debug Step 3: Check if any

parallel-type errors have
been introduced

Tune

Step 4: Tune the parallel
application.

Key Questions - Analyze

e |[s my program parallel?
* Where is the best place to parallelise my program?
 How can | get my program to run faster?

e What's the expected speedup?

5

8/2/2012

Analyze

\2

Implement

V]

Debug

\]

Tune

Four Different Ways to Find the
Hotspots

1. Using Intel compiler’s l00p profiler & imptemen
profile viewer

2. Using the compiler's Auto-parallelizer e

3. Performing a Survey with Advisor

4.Using Amplifier XE

6

8/2/2012

Using the loop profiler
Compile to add

@ instrumentation

icl /Qprofile-functions
/Qprofile-loops:all prog.c

S
L.
-~
-
-~
-~
-~
-~
-~
-~
S
-~

Functon —~ =T
profile —| ________

Loop -
| Profile

View the
Results

3

Loopprofileviewer <filename>

Analyze

\2

Implement

V]

Debug

\]

Tune

7

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

8/2/2012

Using the Auto-Parallelizer

@ Compile enabling auto Analyze

parallelism and reports v
icl /702 /Qipo /Qparallel Implement
— N Y
/Qpar-report2 prog.c = - Rosults
"~ | (20) remark: LOOP WAS AUTO- Debug
PARALLELIZED Vi
Look at (67) remark: loop was not
the parallelized: existence of parallel Tune
results dependence*(see note)
P * Note: You can also look at
o the loops that could not be
@ Add your own parallel code parallelized. It might be
where auto-vectorizer was worth fixing the problem
successful reported. Add the option
/Qguide may give you extra
- - - - information.
20: cilk _for(int=0;i1<100;i++)
21:{ ~
2 Sete | T . Rebuild without auto
45:3} parallelism

icl /702 /Qipo prog.c

8

Copyright© 2012, Intel Corporation. All rights reserved.
8/2/2012 *Other brands and names are the property of their respective owners.

Intel Parallel Advisor — Survey Target

Duplo - My Advisor Result | Duplo.cop | write.c

a| startPage |

& Where should I add parallelism?

|’ Summary ||¥

| |**ﬂ Suitability Report | | @ Correctness Report

Intel Para

Function Call Sites and Loops
ETotal
ERegisterWaitForInputidle
= _tmainCRTStartup
Emain
= @ Duplo::run [loop]

Total Time % Total Time
100,0% I 3.5231s
100.0%: D 3,325 1s
100,0% I 3.5231s
100.0%: D 3,325 1s

89,29 [| |2.9688s

Self Time
Os
Os
Os
Os

Source Location

crtd.c327
duplo.cpp: 304

Focuses developers attention to
the hot call trees and loops as
locations to experiment with
parallelism

=% Duplo:irun Joop] 33.2%: I 2.9364s Os duplo.cpp: 243

=Duplo::run 33.2%: I | 2.0364s Os duplo,cpp: 245

= (% Duplo::process [loop] 59.6% (I 1.9834s Os duplo.cpp: 103

= Duplo::process [loop] 59, 1% 19677 Oz duplo,cpp: 106

[=IDuplo::process 59, 1%; (I 1.9677s 0.74%6s duplo,cpp: 106
#Sourcelineiequals | 20.6%: @ 0.68668 0.58668 sourceling.cpp:4d
[HSourceFile:getling | 16.0%: 0 0.5316s 0.5316s spurcefile.cpp: 168

EEE:EE:EEZE: floop] Duplo - My Advisor ResukrDuplo.cpp }/'Nrite.c] rsmrt Page] \ - X

(0 Duplo::process [loop]
[#Duplo: risSameFilename
Duplo::process

£ Where should I add parallelism? (Source)

2 Intel Parallel Advisor 2011
|, Summary | |¥ Survey Report | |*§*E| Suitability Report | | ﬂ Correctness Reporl\

s

s

HDuplo::run
% Duplo:irun Joop]
[Duplo:run Line Source Total Time | %% me\ Yo | A
HmainCRTStartup 237 & _tmainCRT5tartup - crtd.c: 327
EImainCRTStaftup 238 /7 Compare each f£ile with each other Ea RegisterWaitFarnputldle
for (int i=0;i<(int)sourceFiles. size();it+)
240 std::cout €€ sourceFiles[i]-r»getFilena: 0.001s |
241 int klocks = 0;
242
243 for{int j=0;j<{int)sourceFiles.size(); 29355 0
244 i£(i » j 25 !isSemeFilename (source 0.018s | e
245 blockst+=process (scurceFiles[i] 2.921= @
245 }
Selected (Total Time): s v
< | >

7/1/2010 Optimization

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Use Amplifier XE

Analyze

\2

Implement

. v
[Source][Assembly || BE ™= | 5 52 < 29| E |cPU time - Debug

Line Source CPU Time . 1 1 stack(s) selected. Viewing <1 1of1 [+ v
29 float xinc = (float)deltaX/ {maxl T Current stack is 100.0% of selection
30 float vinc = (float)delta¥/ (max] | 100.0% (3.014= of 3.014<) Tune
3L for (int 1=0; i<maxl; 1+4) { 6-4b.exe!lCalcMandelbrot - mandelbrot.cpp
32| for (int j=0; j<maxd: J+4) { 6-4b.exelSet? - mandelbrot.cpp:d2

setZ{i, j, xinc, yincj: _ 6-4b.exe!Mandelbrot - mandelbrot.cpp:33
G-4b.exelmain - main.cppls
6-4b.exe!_tmainCRTStartup - crtl.c:266
kernel32.dll!BaseThreadlnitThunk+0:1£56¢ - |
ntdll.dIl!RtIUserThreadStart+0:33280 - [Unkn .

3
38 void SetZ{ int i, imnt j, float xir

Selected 1 row(s): -
4 | I L (] b

10

Copyright© 2012, Intel Corporation. All rights reserved.
8/2/2012 *Other brands and names are the property of their respective owners.

Advantages & Disadvantages of
different hotspot methods

Pro Con

Loop Profiler Easy to use * Very basic
* All you need is in compiler Code needs instrumenting
package No call tree
* Profiles loops as well as * No comparison function
functions
Auto- « Easy to use » Easily confounded
parallelizer * Quick way of spotting right IPO obscures loops
place
« Comparison relatively easy
Amplifier XE e Small overhead o (Noeloepprefiler)

 Easy to traverse call stack

* No special build needed

* Multiple options for collection
\viewing

 Results can be compared

No precise call graph

Copyright© 2012, Intel Corporation. All rights
*Other brands and names are the property of their re:

e —— . N

/// \\\\ // \\
s ~ P . . . \
Proj’i/le the System\\ 7 Profile Applications *
/ . . N / = {E Algorithm Analysis \
=-{Z Algorithm Analysis \ / : \
I N / P e ,ﬁ, Easic Hotspots \
Fo N / Lo \
I f4 Advanced Hotspots AN | ‘l
] A | P b ;ﬁ; Concurrency |
L l L& Locks and Waits
| \ : /
L User Mode
- /
- Works oh
\ ! . Inl;ef
\ ra
N *_pnon-Intel
\'\\\\ —_ ’///
\ “~=--__Architectural Analy\gls === More
\ overhead
\ EI {E Ad'u'an{ed Intel(R) Mi[malthtﬂ:ture Code Mame Sandy th
\\ /A General Exploration \\ : an _
\ A Bandwidth] lightweight
\ A& Access Contention | hotspots
Kernel Mode \\ """ ﬁ ﬂlﬂﬁ[h.ﬂ.ﬁﬂl]fjjﬁ I
N L A4 Client Analysis 'l
Works only on _ A CorePortSaturation |
* Intel . & Cydesand uOps !
\;\ & Loop Analysis /

\\,ﬁ, Memory Access

12

Copyright© 2012, Intel Corporation. All rights reserved.
8/2/2012 *Other brands and names are the property of their respective owners

Lab 1, Step 1
Hotspots Analysis A
Activity 6-1 & 6-4 Drosramming

with Intel” Parallel Studio XE

C:\CLASSFILES\Lab Sources\IPS Book\Chapter 6

http://www.amazon.co.uk/gp/reader/0470891653/ref=sib_dp_pt

Explanation of
Compiler
Flags

14

Copyright© 2012, Intel Corporation. All rights reserved.
8/2/2012 *Other brands and names are the property of their respective owners.

/0d (-O0) Building with Optimisation
Disabled

e Code is not re-ordered
e ‘Dead code’ is not eliminated

e Improves visibility when using profiling tools.
— You should use this option when looking for threading errors!

e The code is usually much slower ®

e The binaries are usually much Blgger ®

e /Zi (-g) produce debug information (can be used with /01,
/02, /O3 etc).

15

8/2/2012

/01 (-O1) OPTIMIZE FOR SPEED AND SIZE

e This option is very similar to /02 except that it
omits optimizations that tend to increase object

, such as the in-lining of functions.

Generally useful where memory paging due to large
code size is a problem, such as server and
database applications.

is Not turned

OnN, even if it is invoked individually by its fine
grained switch /Qvec.

16

8/2/2012

/702 (-0O2) OPTIMIZE FOR MAXIMUM SPEED.

e This option will create IN Most
cases.

e Optimizations include
— scalar optimizations
— inlining and some other

— Inter-procedural optimizations between
functions/subroutines in the same source file

— vectorization

— limited versions of a few other loop optimizations such as
loop versioning and unrolling that facilitate vectorization.

17

Copyright© 2012, Intel Corporation rights reserve
8/2/2012 ames are the property of their respective owners

/03 (-O3) OPTIMIZES FOR FURTHER SPEED
INCREASES.

e This includes all the /02 optimizations, together
with other

e These high level optimizations include more
aggressive strategies such as:
— scalar replacement,
— data pre-fetching,
— loop optimization,
— among others.

18

8/2/2012

Interprocedural Optimisation

flc | P fLobj | ¢ /Qipo (Linux —ipo)
T Compile :~--——"'\ Intermediate

— language

Souree fles - mockobiects « Call to functions are
fee Compile ; f2.0b) ; replaced by the body of

the function (aka
INlining)

 fexe | e Can lead to loss of
Evertable symbol information
(unhelpful when
debugging)

« /0ObO, /70b1, /70b2
turns of inlining. (Linux
—inline-level=0 ,1,2

19

Copyright© 2012, Intel Corporation. All rights
8/2/2012 *Other brands and names are the property of their re:

Steps In moving from Serial
to Parallel

Step 1 : Look for
Analyze hotspots in application.

These are best candidates
_emm T T T ~< to make parallel

N
// S

'\ Implement ;Btep 2: Add parallel
N _sconstructs into source

~ e

~< _-~ code

~ o
-~
—

Debug Step 3: Check if any
parallel-type errors have
been introduced

Tune

Step 4: Tune the parallel
application.

Key Questions — Implement

What’s the best method?

How much programming effort is
required?

Is my code still working?

22

Language to help parallelism paraiiel code

#pragma omp parallel for

Intel® Cilk™ Plus For(i=1;i<=4;i++) {
printf(“lter: %d”, 1);
OpenMP ¥
Intel® Threading Building Blocks
Intel® MPI

Fortran Coarrays

OpenCL
cilk_for (int i = @; i < max_row; i++)
o (it 4 = 05 5 < max_cols e) Native Threads
i p[i][j] = mandel(complex(scale(i), scale(j)));

}

Copyright© 2012, Intel Corporation rights reserve
8/2/2012 ames are the property of their respective owners

Structured Parallel Programming
Michael McCool, James Reinders, Arch Robison
Publisher: Morgan Kaufmann (31 July 2012), ISBN-10: 0124159931

Programming is now parallel programming. Much as
structured programming revolutionized traditional serial
programming decades ago, a new kind of structured)
programming, based on patterns, is relevant to parallel “-.I I'u(-ll”'(| I |— a l'ﬂl I('—'I
programming today. Parallel computing experts and) '
industry insiders Michael McCool, Arch Robison, and James I roeramming
Reinders describe how to design and implement e, -/
maintainable and efficient parallel algorithms using a
pattern-based approach. They present both theory and
practice, and give detailed concrete examples using

multiple programming models. Examples are primarily
given using two of the most popular and cutting edge
programming models for parallel programming: Threading
Building Blocks, and Cilk Plus. These architecture-
independent models enable easy integration into existing
applications, preserve investments in existing code, and
speed the development of parallel applications. Examples
from realistic contexts illustrate patterns and themes in
parallel algorithm design that are widely applicable
regardless of implementation technology. This title provides
the patterns-based approach that offers structure and
insight that developers can apply to a variety of parallel
programming models. It develops a composable, structured,
scalable, and machine-independent approach to parallel
computing. It includes detailed examples in both Cilk Plus
and the latest Threading Building Blocks, which support a
wide variety of computers.

23 Optimization

8/2/2012 Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Introduction to Concurrency in Programming Languages
Matthew J. Sottile, Timothy G. Mattson, Craig E. Rasmussen
Publisher: Chapman and Hall/CRC (7 Oct 2009). ISBN:ISBN-10: 1420072137

Exploring how concurrent programming can be assisted by language-
level techniques, Introduction to Concurrency in Programming
Languages presents high-level language techniques for dealing with
concurrency in a general context. It provides an understanding of
programming languages that offer concurrency features as part of INTRODUCTIDON TO

the language definition. s
Concurrency in

The book supplies a conceptual framework for different aspects of

parallel algorithm design and implementation. It first addresses the P . ~
limitations of traditional programming techniques and models when rogram mln g

Languages

dealing with concurrency. The book then explores the current state
of the art in concurrent programming and describes high-level
language constructs for concurrency. It also discusses the historical
evolution of hardware, corresponding high-level techniques that were
developed, and the connection to modern systems, such as multicore
and manycore processors. The remainder of the text focuses on
common high-level programming techniques and their application to
a range of algorithms. The authors offer case studies on genetic
algorithms, fractal generation, cellular automata, game logic for

solving Sudoku puzzles, pipelined algorithms, and more. M

'HEV I SO
ivorTny G, Mat

lllustrating the effect of concurrency on programs written in familiar e F Rasui
languages, this text focuses on novel language abstractions that truly
bring concurrency into the language and aid analysis and compilation
tools in generating efficient, correct programs. It also explains the
complexity involved in taking advantage of concurrency with regard
to program correctness and performance.

24 Optimization

8/2/2012 Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Patterns for Parallel Programming

Details a pattern language for parallel
algorithm design

Examples in MPI, OpenMP and Java
are given

Represents the author's hypothesis for
how programmers think about parallel
programming

Patterns for Parallel Programming, Timothy G. Mattson,

Beverly A. Sanders, Berna L. Massingill, Addison-Wesley,

2005, ISBN 0321228111

25

Copyright© 2012, Intel Corporation. All rights reserve
*Other brands and names are the property of their respective

d.
owners.

Y
vw

PATTERNS
FOR PARALLEL
PROGRAMMING

26

Intel Threading Building Blocks
James Reinders,

O'Reilly Media; 1 edition (19 July 2007) 1SBN-10: 0596514808

|

Multi-core chips from Intel and AMD offer a DA e (e B i B e e e o “
dramatic boost in speed and responsiveness, ’ !

and plenty of opportunities for multiprocessing

on ordinary desktop computers. But they also |
present a challenge: More than ever,

multithreading is a requirement for good
performance. This guide explains how to

maximize the benefits of these processors

through a portable C++ library that works on
Windows, Linux, Macintosh, and Unix systems.

With it, you'll learn how to use Intel Threading
Building Blocks (TBB) effectively for parallel
programming -- without having to be a

threading expert.

Written by James Reinders, Chief Evangelist of
Intel Software Products, and based on the
experience of Intel's developers and customers,
this book explains the key tasks in
multithreading and how to accomplish them
with TBB in a portable and robust manner. With
plenty of examples and full reference material,
the book lays out common patterns of uses,
reveals the gotchas in TBB, and gives important
guidelines for choosing among alternatives in
order to get the best performance.

Threading
Building Blocks

5 wawe fr e
‘ ORMY. L TN Y i"t:h L-...t-

Copyright© 2012, Intel Corporation. All rights reserved.
8/2/2012 *Other brands and names are the property of their respective owners.

Scope of Chapter 6

MKL i!éasies?z

IPP

Libraries

- = ~
/7 ~

" N
7| Use /Qparallel }

Automatically | and /Qguide || 8
options \ -
I o)
i 1 (0]
1 | %
. L
\ Cilk Plus | !
\ /

\ OpenMP |/

Prog rammaticé(BB .7
- 7z
/

~ L
More

, / Native Threads W
/

Covered in this chapter

27

Copyright© 2012, Intel Corporation. All rights reserved.
8/2/2012 *Other brands and names are the property of their respective owners.

What Is OpenMP?

Portable, shared-memory threading API
—Fortran, C, and C++

—Multi-vendor support for both Linux and
Windows

Stan

sm
Sup

Stan : :
directed threading experience

Combines serial and parallel code in single
source

e Excellent support of “incremental” parallelization
* No need for serial and parallel source code releases

Programming Model

* Master thread spawns a team of threads as needed

* Parallelism is added incrementally: that is, the sequential program
evolves into a parallel program

7 L 7
» '~ S — \ » '~
N 7’ [\ /, S /7
/ \ / \ ,// \ /
Master N
Thread

Parallel Regions

Copyright© 2012, Intel Corporation. All righ
*Other brands and names are the property of their

omp for Construct

#pragma omp parallel
#pragma omp for

Threads are assigned an
Independent set of
Iiterations

Threads must wait at the
end of work-sharing
construct

Copyright© 2012, Intel Corporation rights reserve
al 1

Advantage of Parallel Sections

Independent sections of code can execute
concurrently — reduce execution time

-

#pragma omp parallel sections

{

#pragma omp section
phasel();
#pragma omp section
phase2();
#pragma omp section

h 3(0);)
1 phase30 Serial Parallel

Copyright© 2012, Intel Corporation rights reserve
al

The Private Clause

Reproduces the variable for each task

- Variables are un-initialized; C++ object is default
constructed

- Any value external to the parallel region is
undefined

void* work(float* c, Int N) {
float x, y; Int 1;
#pragma omp parallel for private(X,y)
for(i=0; iI<N; i1++) {
x = a[i]; y = b[i];
cl[i1] = x + vy;
}

Schedule Clause Example

#pragma omp parallel for schedule (static, 8)
forC int 1 = start; 1 <=end; 1 += 2)

1
¥

iIT (TestForPrime(i)) dgPrimesFound++;

Iterations are divided into chunks of 8

e |f start = 3, then first chunk is
1={3,5,7,9,11,13,15,17}

Implementing Parallelism

34
8/2/2012

Parallelizing loops

Parallelizing sections and functions
Parallelizing recursive functions
Parallelizing pipelined applications

Parallelizing linked lists

Copyright© 2012, Intel Corporation rights reserve
al 1

The Beauty of Lambda

[capture _mode] (formal parameters) -> return_type {body}

\\ J \ AN J
Y Y Y
[&] = by-reference Can omit if there are Can omit if return
[=] = by-value no parameters and type is void or code

[l = no capture return type is implicit. Is “return expr;”

35

Copyright© 2012, Intel Corporation. All rights
8/2/2012 *Other brands and names are the property of their re:

An example lambda function

1: #include <iostream>

2: #include <algorithm>

3: using namespace std;

4: 1nt main(Q)

5: {

6: char Message[]="The Beauty of Lambda!'‘';

7

8: int NumSpaces = 0;

9: for_each(

10: Message, //

11: Message + sizeof(Message),

12: [&NumSpaces] (char c) { if (c == * ") NumSpaces++;}
13:);

14: cout << "There are " << NumSpaces <<" spaces In: "'<<
15: Message << """ <<endl;

16: }

STL template for_each
template<class Inputlterator, class Function> Function for_each(Inputlterator _First, Inputlterator _Last, Function _Func);

Copyright© 2012, Intel Corporation. All righ
*Other brands and names are the property of their

Parallelizing for loops

#Hinclude < cilk/ cilk.h >
cilk_for (inti = 0; i1<100; i++)
{

+

work(1);

#include < tbb.h >
parallel_for (size_t(0), 100,

[=]1(size _ti) {

work(i);

} // end of lambda code
); // end of parallel _for

37

#pragma omp parallel
{
#pragma omp for
for (inti = 0; i<100; i++)
{
work(i);

+

} // end of parallel region

Key
Cilk Plus

Copyright© 2012, Intel Corporation. rights reserve
8/2/2012 *Other brands and names are the proper i

Parallelizing while loops

#Hpragma omp parallel

#include < tbb.h > {
#include < vector > #Hpragma omp single nowait
void Work(int Val) {
{ // do some work here} int counter = 0;
while(counter < 10)

Func() {
{ counter++;

std:: vector < int > #pragma omp task firstprivate(counter)

S; {

s.push_back(0); // etc work(counter);
tbb:: parallel_do } } } } // implicit barrier
(

s.begin(), s.end(), intj = 0;

)[&](int Val) { Work(Val); } while (j < 100)

: {
ks cilk_spawn Prime(Pri); Key
j + +, Cilk Plus

} TBB

38

8/2/2012 Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Parallelizing sections and functions

#include < cilk/cilk.h > i{”t main()
int main() :
{ #Hpragma omp parallel sections
cilk_spawn Work1(); { :
cilk_spawn Work2() #pragma omp section
Work3 0: Work1();
cilk s nc’: #Hpragma omp section
} =/ Work2();
#Hpragma omp section
#include < tbb/tbb.h > Work3();
int main() +
{ ¥
tbb:: parallel _invoke(
[1{ Work1();},
[1{ Work2(); },
[1{ Work3(); } Key
); Cilk Plus

} TBB

39

Copyright© 2012, Intel Corporation. rights reserve
8/2/2012 *Other brands and names are the property of their respective owners

Parallelizing recursive functions

#include < cilk/ cilk.h = void Work(int 1)

. o {
\£0|d Work(int 1) if(i > 4) return:
if(i > 4) return: #pragma omp task firstprivate(i)
printf(" S% d\ n", i); { : o noEy -
)) printf("" S% d\ n", i);
1;:_llk_spawn Work(i1 + Work(i + 1);
p,rintf(" E %d\ n", i): printf("" E %d\ n", i);
C +
> }
?t maing int main()
inti = 0; {'nt i —0-
Work(i): b=
1 #pragma omp parallel

#Hpragma omp single
{ Key
Cilk Plus

40

8/2/2012

Parallelizing recursive functions

#include < stdio.h >
#include < tbb/tbb.h >
tbb:: task _group g;
void Work(int 1)
{

if(i > 4) return;

g.run(

[=]1{ // spawn a task
printf(* S% d\ n", 1);

Work(i1 + 1);
printf("" E %d\ n", 1);
ks
);
¥
Int main()
{inti=0; Key
Work(1); Cilk Plus
g.wait(); // wait for tasks to complete 8B

} OpenMP

41

Copyright© 2012, Intel Corporation. rights reserve
8/2/2012 *Other brands and names are the property of their respective owners

Parallelizing pipelined functions

int main() // Pipeline STAGE 2
{ #pragma omp for schedule(dynamic)
FILE *pF = fopen(".\\ Test.Data"," r"); for (int j = O; j<LINE_LENGTH;j++)
FILE *pO = fopen(" Out.Data"," w"); LineOut[i][j]1=
for (int j=0;j<LINE_LENGTH;j++) sgroot((float)Lineln[i][j1):
fscanf(pF,"% d ",& Lineln[O][jD:
#pragma omp parallel //Pipeline STAGE 3
{ #pragma omp single nowait
for (inti =0; i < NUM_LINES; i++) {
{ for (int j=0; j<LINE_LENGTH;j++)
// Pipeline STAGE 1 fprintf(pO,"% f ", LineOut[i][j];
#pragma omp single nowait fprintf(pO,"\ n");
{
// start reading the next line }}
// Don't read beyond end }
if(i < NUM_LINES-1); fclose(pF);
{ fclose(pO);
for (int j=0;j<LINE_LENGTH;j++) return O;
fscanf(pF"% d",&Lineln[i+1][3 e

iD; Cilk Plus

8/2/2012 Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Parallelizing pipelined functions

int main()
{
inti=0;
int ntokens = 24;
FILE *pF = fopen(".\\ Test.Data"," r");
FILE *pO=fopen('Data"," w");
parallel_pipeline
(
ntokens,
tbb::make_filter < void, int >
(
filter:: serial_in_order, [& i,& pFile]
(flow_control& fc)-> int
{
if (i < NUM_LINES)
{
for(int j=0;j<LINE_LENGTH;j++)
fscanf(pF,"% d",&Lineln[i][j1);
return i++;
¥
else fc.stop();
¥
)

43

& tbb:: make_filter< int, int >
(filter:: serial_in_order, []J(int i)-=int

{
parallel_for
(size_t(0), (size_t) LINE_LENGTH,
[&](size_t))
{
LineOut[i][j]=
sqroot((float) Lineln[i][jD;
be
); _
return i;
by
)

& tbb:: make filter < int, void >
(filter:: serial_in_order,[& pO](int i)
{
for (int j=0; j<LINE_LENGTH; j++)
fprintf(pO,"% f ", LineOut[i][jD;
fprintf(pOutputFile,™\ n");

he
) Key
); Cilk Plus
} TBB

Copyright© 2012, Intel Corporation. All righ
8/2/2012 *Other brands and names are the property of the

Parallelizing Linked Lists
void RunThoughLinkedList()
{

#Hpragma omp parallel {
#Hpragma omp single{
node *pHead = Head;

void RunThoughLinkedList() {
tbb:: task group g;
node *pHead = Head;
while(pHead !'= NULL)

{ : _
g.run({Whl|e(pHead !'= NULL)
[=1{ : :
Work(pHead): ?pragma omp task firstprivate(pHead)
¥ Work(pHead);

).

pHead = pHead->next;

}

pHead = pHead->next;

b5
g.wait(); Frxi
e #include < cilk/ cilk.h >
void RunThoughLinkedList()
{

node *pHead = Head;
while(pHead !'= NULL)

{ Key
cilk_spawn Work(pHead); Cilk Plus
pHead = pHead-> next; TBB

} } OpenMP

44

8/2/2012 Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Steps In moving from Serial
to Parallel

Step 1 : Look for
Analyze hotspots in application.
These are best candidates
to make parallel

|mp|ement Step 2: Add parallel
constructs into source
PP D -._ code
\ Debug Step 3: Check if any
N _.“"parallel-type errors have

______________ been introduced

Step 4: Tune the parallel
application.

Key Questions - Verify

Analyze

\2

Is the parallelism correct? implement
v

Debug

]

Tune

Do | have deadlocks or data races?

Do | have memory errors?

Does my program still work as intended?

46

Copyright© 2012, Intel Corporation rights reserve
8/2/2012 ames are the property of their respective owners

Ways to Find your Parallel Errors

Analyze

i
1. Use Inspector Xk

V]

Debug

2. Use Advisor v
3. Use Intel-provided Data Race Detector in
GDB

47

8/2/2012

Dynamic vs Static Error Detection

s

Threading
Errors))
Programming Security

i

Errors Errors

Detect with

Dynamic Analysis Detect with

and Debugging Static
Security
Analysis

Intel Inspector XE]
and\or Intel Compiler

Data Race Detector in GDB and
Intel Inspector XE

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Inspector XE — Threading Errors &
warnings

e Data Races

Deadlocks

Lock hierarchy violations

Potential privacy infringements

Other threading info

49

8/2/2012

Inspector XE — Memory Errors &
warnings

e Memory leaks

« Bad use of memory allocation \ de-allocation

* Invalid memory access

50

Copyright© 2012, Intel Corporation rights reserve
8/2/2012 ames are the pri erty of their respective owners

Inspector XE - Standalone GUI

ﬂ C\home\projects'

File View Help
- | () Bz b

= db

Project Navigator *
i Chhome\project...

EI-- My Inspector Xl

- r002ti3

4|

-

New Inspector XE Result

A Analysis Type
L=

== Memory Error Analysis
----- A Detect Leaks

..... A Detect Memory Prok
..... P¥.ocate wemory prot
== Threading Error Analysi
----- A Detect Deadlocks

----- A Detect Deadlocks an
----- A Locate Deadlocks an
- Custom Analysis Types

Ins r XE Results - find_and_fix_memory_errars - Intel

Locate Memory Problems

Copy

Widest scope memaory error analysis type.
Maximizes the load on the system. Maximizes
the time required to perform the analysis.
Maximizes the chances the analysis will fail
because the system may run out of resource...

Detect resource leaks

Stack frame depth:

| Analyze stack accesses

Remove duplicates

4l

(E’} Details

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

#® Close

Project Properties

Show Command Line

Optimization

Problem State Lifecycle
Makes problems easier to manage

) Detect Memory Problems Intel Inspector X€ 2011

& Target Analysis Type || B Collection Log m

View Source
Problems E Edit Source
Sources ~“ B 23 Copyto Clipboard

Mismatched allocatio= . delete?.cpp; new.cpp tbb_debug.dll Explain Problem
Mismatched alloca #n/ ... PeNot fixed find_and_fix_memory_... find_and_fix_... - Nat Fored
Kernel resource [gak Confirmed asctime.c MSVCRL00D.dI
Kernel resourg€ leak Mot a problem isatty.c MSVCRL0OD. I S

W Fixed mktemp.c MSVCR100D.dll Fixed

v Fixed find_and_fix_memory_... find_and_fix_... Mot a problem

.//’

New Detected by this run
Not Fixed Previously seen error detected by this run
Not a Problem Set by user — tool will not change
Confirmed Set by user — tool will not change
Fixed Set by user
Regression Error detected with previous state of “Fixed”

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Suppressions Manage False Errors

D Description - Source Function Module

SuppreSSionS § & winvideo.h:201 loop_once find_and_fix_threading errorcexe

are marked NE _ Bead winvideo:i202 foop-once find-and-fixthn ot as Related Code Location
IXB Read winvideo.h:270 next_frame find_and_fix_thr Set as Focus Code Location
X7 Write winvideo.h:202 loop_once find_and_fix_thr Edit Source
*9 Write B winvidech 278 rextframe findandfhcthe O Copy to Clipboard
KT Wt B winvideoh 278 next-frame fint-and-focthe Explain Prablem

Problem Code Location ... Module/Function/Source/Line

find_and_fix_threading_errors.exelloop_once - winvideo.h:201

[Datarace Write find_and_fix_threading_errors.exelnext_frame - winvideo.h:270

Be specific or
select group of

General Stack frame

Any problem |find_and_fix_threading_errors.exe!loop_once - winvideo.h:201 -
Any description

] Any module || Any function [Any source [Any line

Suppressions are saved in one or more files

Tool suppresses all files from specified folder(s)
Private & Public suppression folders

Copy a suppression to public folder to promote

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Lab 1 , Step 3

Debugging Parallel Errors

Activity 8-1 & 8-2

Programming
with Intel” Parallel Studio XE

C:\CLASSFILES\Lab Sources\IPS Book\Chapter 8

http://www.amazon.co.uk/gp/reader/0470891653/ref=sib_dp_pt

Integrated Debugger Support

- 2%-20% | Detect Leaks
= Break into debugger > Jo o Boc e ienor pobiens
— AnaIyS|S can Stop When |t & 20%-80x Locate Memory Problems
Analysis Time Overhead

detects a problem
— User is put into a standard petect Memory Problems
Medium scope memory error analysis type. Increases the load on

debugg | ng SeSSion the system and the time and resources required to perform

analysis. Press F1 for more details.

e \Windows* .

(") Analyze without debugger

— M ICI’OSOft* V|Sua| StUdIO Run an analysis and report all detected problems. Use
to view correctness issues without stopping in the
Debugger debugger to examine them. A
P LI N ux* @ Enable debugger when problem detected

Run an analysis under the debugger and stop every
— gd b time a problem is detected. Use to allow investigation
of every problem detected.

111

— Intel® Debugger

(C) Select analysis start location with debugger

Run target application under the debugger with
analysis disabled until you choose to turn on analysis.
Before starting, set a code breakpoint to stop execution
prior to where you want analysis to begin. Sele...

55

Copyright© 2012, Intel Corporation. All rights reserved.
5/26/2014 *Other brands and names are the property of their respective owners.

Analyze Memory Growth
Transactional Applications

P, Reset Leak/Growth Detection o Set Start Point

% Show Leaks/Growth Mow

Analysis Results:

Memory Growth
Problem Set

Code location for each
block of memory that was
allocated but not de-
allocated during the time
period

56

5/26/2014

During Analysis:

Set End Point

(e

Detect Memory Problems

& Target Analysis Type|| & Collection Log m

Problems

Ta & Type Sources

=P @ Memaory leak ixe_mem_growth.cpp

=EHP & Memory growth [Unknown]; ixe_mem_gro...
Start memory growth det... [Unknown]
Memaory growth ixe_mem_growth.cpp:7
End memory growth det... [Unknown]

o1l Lof1 b Al

Description Source Function Module

Modules Object ... State
ixe_mem_growth.e.. 144 e MNew
Unknown; ixe_mem... 272 Fe Mew
Unknown F Not fixed
ixe_mem_growth.e.. 27. ' New
Unknown F Not fixed

[

Object Size Offset

Allocation site ixe_mem_growth.cpp:7 transaction ixe_mem_growth.exe 272

=] i
3 char “str;
p— 7 str = {(char*) malloc(l&);
a8 h
)

ixe mem growth.exe!transaction

ixe mem growth.exe!main - ixe m
ixe mem growth.exe! tmainCRTSta
ixe mem growth.exe!mainCRTStart
kernel32.dll!BaseThreadInitThun

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Optimization
5 [T

On-demand leak detection
Detect memory leaks before application exits

» Check code regions between points
‘A" and 'B* for leaks

e Check daemon processes for leaks
» Check crashing processes for leaks

Tf'] Detect Memory Problems

& Target Analysis Type || B Collection Log m

Problems
Da Type Sources Modules Object Size State
Memo ry L eak EPL @ Mermory leak ixe_mem_growth.cpp ixe_mern_growth.exe 192 R Mew
. 0 Memory leak ixe_mem_growth.cpped ixe_mem_growth.exe 192 1 Mew
Shown durlng run tlme HP2 Mernory growth [Unknown]; e_mem_gr... Unknown; xe_mem_gr... 368

41l 1of1 [[Al]

Description Source Functicn Madule Object Size Offset

Allocation site ixe_mem_growth.cpp:? transaction ixe_mem_growth.exe 192
5 { ixe mem growth.exe!transaction
char *3tr; ixe _mem growth.exe!main - ixe
3tr = {(char*) malloc(l&): ixe _mem growth.exe! tmainCRTSt
ixe_mem growth.exe!mainCRTStar
malloc(d): kernel3l.dll !BaseThreadInitThu

57 e
Optimization
Copyright© 2012, Intel Corporation. All rights reserved. CHl

5/26/2014 *Other brands and names are the property of their respective owners.

Inspector APIs for memory growth
and leak detection.

___itt_heap_growth memory growth detection
__Itt_heap_ leaks on-demand leak detection
__itt_heap_reset _detection reset the growth/leak baseline
__itt_heap_record generate a report

58

Copyright© 2012, Intel Corporation. All rights reserved.
8/2/2012 *Other brands and names are the property of their respective owners.

Child Program Analysis

Running a top level script is the norm for some Linux apps.
For such cases, a different Child Program can be
analyzed (not necessarily the app launched by
Inspector XE).

Limitations:

- Only the first instance of Child Program will be analyzed
by Inspector XE analysis.

- Child Program name is the one shown in Windows Task
Manager or the name shown in “ps —aef” on Linux.

- Multi-process analysis is not supported for .NET
applications.

Child Program Analysis is very useful in multi-process scenario |

59

Copyright© 2012, Intel Corporation. rights reserve
5/26/2014 *Other brands and names are the property of their respective owners

Command Line Interface

e Inspxe-cl is the command line:
— Windows: C:\Program Files\Intel\Inspector XE
\bin[32]64]\inspxe-cl.exe
— Linux: Zopt/intel/inspector xe/bin[32]|64]/i1nspxe-cl
e Help:

inspxe-cl —help
e Set up command line with GUI|

N s s o e ol
e Command examples: oS
inspxe-cl -collect-list e

inspxe-cl —collect ti2 -- MyApp.exe
inspxe-cl —report problems

Great for regression analysis — send results file to developer
Command line results can also be opened in the GUI

60

Copyright© 2012, Intel Corporation. All rights reserved.
5/26/2014 *Other brands and names are the property of their respective owners.

Reporting

To generate a report:
inspxe-cl —R=<report-type> <results directory name>

Sample commands:
inspxe-cl —report-list
inspxe-cl -report=summary

inspxe-cl -report=problems If you have time
) re-run the inspection
Example: B from the command line
cd /home/user/testProgram/roO00Omi
cd ..

inspxe-cl -R=observations r000mi

Report generation is very convenient to use from command line.

61

Copyright© 2012, Intel Corporation. All rights reserved.
5/26/2014 *Other brands and names are the property of their respective owners.

Steps In moving from Serial

to Parallel

Analyze

Implement

-
’—‘
-

== =
—
-~

-

-

-

Step 1 : Look for
hotspots in application.
These are best candidates
to make parallel

Step 2: Add parallel
constructs into source
code

Step 3: Check if any
parallel-type errors have

BN been introduced

,/'Step 4: Tune the parallel
application.

Key Questions -Tune

Do my tasks do equal amounts of work?

Is my application scalable?

Is the threading running efficiently?

63

Copyright© 2012, Intel Corporation rights reserve
8/2/2012 ames are the property of their respective owners

Analyze

\2

Implement

V]

Debug

V]

Tune

Intel® VTune™ Amplifier XE (intel‘

Performance Profiler

Where is my application...

()) N\ [)) N\ [..)
Spending Time? Wasting Time? Waiting Too Long?
e] Wait Timew
F-CtaIIStau:I-: [=] S Line Miﬂ.fﬁfég"' Wait
= algorithm_2 1560 (D 475| float x, ry, rz d |:|IE||E IPcu:ur |:|Ok lIcleal Count
® do_xform « | 3.560 (I 176.504s [|| 15,277
#l algorithm_1 1412 (I 477 flost parami = (A2 84.681s [| [5499
+ BaseThreadInitThi 0000z | 478 bool neg = {rz < C 84612 0 5,480
* Focus tuning on » See cache misses on » See locks by wait time
functions taking time your source « Red/Green for CPU
* See c_aII stacks » See functlons_ sorted by utilization during wait
» See time on source # of cache misses
\. J . J . J

* Windows & Linux
 Low overhead
 No special recompiles

Advanced Profiling For Scalable Multicore Performance

Software & Services Group, Developer Products Division

Copyright © 2013, Intel Corporation. All rights reserved. Optimization
Notic

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/

Amplifier XE — ‘Parallel’ Analysis
Types

e Hotspots
« Concurrency

e Locks and waits

You can swap between the different analysis types —
but not all data is captured in each analysis type

DDDDDD

ﬁ wxTabButtonsMenu
% E

Hotspots
5| Hotspots by CPU Usage
Owverhead Time:

???????
Paused Time:

e L

65

8/2/2012

e —— . N

/// \\\\ // \\
s ~ P . . . \
Proj’i/le the System\\ 7 Profile Applications *
/ . . N / = {E Algorithm Analysis \
=-{Z Algorithm Analysis \ / : \
I N / P e ,ﬁ, Easic Hotspots \
Fo N / Lo \
I f4 Advanced Hotspots AN | ‘l
] A | P b ;ﬁ; Concurrency |
L l L& Locks and Waits
| \ : /
L User Mode
- /
- Works oh
\ ! . Inl;ef
\ ra
N *_pnon-Intel
\'\\\\ —_ ’///
\ “~=--__Architectural Analy\gls === More
\ overhead
\ EI {E Ad'u'an{ed Intel(R) Mi[malthtﬂ:ture Code Mame Sandy th
\\ /A General Exploration \\ : an _
\ A Bandwidth] lightweight
\ A& Access Contention | hotspots
Kernel Mode \\ """ ﬁ ﬂlﬂﬁ[h.ﬂ.ﬁﬂl]fjjﬁ I
N L A4 Client Analysis 'l
Works only on _ A CorePortSaturation |
* Intel . & Cydesand uOps !
\;\ & Loop Analysis /

\\,ﬁ, Memory Access

66

Copyright© 2012, Intel Corporation. All rights reserved.
8/2/2012 *Other brands and names are the property of their respective owners

Intel® VTune™ Amplifier XE

Get a quick snapshot

Thread Concurrency Histogram

This histogram represents a breakdown of the Elapsed Time. It visualizes the percentage of the wall time the specific number of threads were
considered running if they are either actually running cn a CPU or are in the runnable state in the 05 scheduler. Essentially, Thread Concurrer
that were not waiting. Thread Concurrency may be higher than CPU usage if threads are in the runnable state and net consuming CPU time,

15s : |
! L
125 ' E‘I
v el 4 cores
E g 3'//
e 5
E bs U'
(=1
L]
= £ gI
E 4 5 4]
BN el Over
[[[
Simultanecusly Running Threads
CPU Usage CPU

Usage

Thread

O e Y

Frame
Rate

Thread Concurrency

Frame Rate

COPYTignuy ZulZ, 1Ntel COrporauor. All rngrits reservea.

*Other brands and names are the property of their respective owners.

Intel® VTune™ Amplifier XE

Identify hotspots

P Basic Hotspots Hotspots viewpoint (change) @ Intel VTune Amplifier XE 2013

€@ Analysis Target Analysis Type | | B8 Collection Log | | Bl Summary | BRIt *% Caller/Calle »
Grouping: |Function / Call Stack -] . CPL Function/CPU Stack - CPLU Time

Function / Call Stack CPU Time % o || Viewing 4 10f57 b selected “E‘d‘m
=lsphere_intersect 5.674s [‘ﬂ 28.7% (1.629s of 5.674s)

B grid_intersect 5.674s o
=l . intersect_objects 5.485s —
=T shader 3.545< [
1 F #race 2 s45; [

S

[

tachyon_analyze_locks.exelsphere_in...

tachyon_analyze_locks.exe!gnid_inter...

tachyon_analyze_locks.exelintersect_...

- fact
. ‘I - tack
Hottest Functions s S~ tact Hottest Call Stack
< [o
L0 5' /
gy ———— tachyon_analyze_locks.exe![TEE paral...
56745 ~ N thb.dllfunc@0:x10014614 +0xda - |...
b thb.dll/func@0x100145f4+0xla - [... -

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® VTune™ Amplifier XE

Identify threading inefficiency

T T
- QR0 -0 5s 6s 655 Ts 755 8s 855 g | [¥] Thread
Coarse Grain Tty ‘ e
n;amCRTSta rtup (Ox2cd - - S waite
¥ [i €PU Timel
O C S OMP Worker Thread #1 I Transitions
= iotred CPU Usage
3 =
£ |0MP Worker Thread 22 ks CPU Time
(0:228¢c) Thread Concurrency
Uk Concurrency
OMP Worker Thread 23
(0:1d74)

Thread Concurrency

1 r

1 1) 1)
286s 2875 288s [¥] Thread

High Lock | e
C O n te n ti O n %N:fﬁ\l;t;rka Thread #1

(NI
HI{ (VNN AR
| il

1 0T AukiCRU) Tirse

3 [A RRRNITT i (TSI
£ [OMP Worker Thread #2|| 1 1 il lliunt i iR R (] cPU Usage LOW
[0x1550) A 1 Uk CPU Time
OMP Warker Thread +3 | | 1l 11l i A0 000 I (RITLRICRLTTI [#] Thread Concurrency
(e e
| oncurrency

Concurrency

Thread Concurrency ‘

4 b

-
QOO 14s
L O ad mainCRTStartup (i cc
4
Imbalance [

OMP Worker Thread #2
(0:25c4)
OMP Worker Thread #3
(0x2074)

@ Running

Thread

Concurrency

CPU Usage

Thread Concurrency h

«

b

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® VTune™ Amplifier XE

Ind Answe s

- - [y “View - = - C ade
AdJUSt Data Grouplng Hotspots - View hotspots colored by CPU usage (2]
] & Analysis Target Analysis Type | | 38 Collection Log || H Summary | |¢+] Bottem-up | *+ Top-down Tr }
Functicn - Call Stack
. w -
Madule - Function - Call 5tack N W
Source File - Function - Call Stack Function CPU Time~
Call Stack Module
Thread - Function - Call Stack - LnlHEE
... (Partial list shown) .Idle . Poor D Ok .Ideal . Over
. # dliStepPlugin 7.550s | RenderSystem_Direct308.0LL
Click [+] for Call Stack = = %l FireObjectzcheckColli 6.389s [SystemProceduralFire.DLL
[FireQbject::ProcessFir 4.5925_ SystemProceduralFire.DLL
" " [# BaseThreadInitThunk | 2.566s [NI kernel32.dII
DOUbIe CIICk FunCtlon =\ WBgre:FileStreamDatas| 2.562<[0 OgreMain.dll
to VieW Source [+ TaskManagerTBB::Par 2.5335— Smoke.exe
[AlScene:GetP Ol 1.710s [/ SystemALDLL
[+ TaskManagerTBB::\Wa 1.5825— Smoke.exe
FI Ite r Selected 189 row(s): 47 481 -
. o . < [(3N m | -
by Timeline Selection I
- - LTS N . O Lt
(or by Grid Selection) Wy | [clobalmark
WIinMainCRTSTEr [] === Frame
ﬁ Thread (0x1a28)] Thread
i [Thread (0x8e4) [+ Fumning | =
[Thread (0x29c8) Wk CPU Time
CPU Usage | | “u' ' | [] === user Task
[#] cPU Usage
. Frames over Time _M_L Uk CPU Time
Fllter by MOdU'G &] b Frallrﬁuverﬁ_ —

Other ContrOIS b U Mo filters are applied. ¥ Module: [} - Call Stack r--h:u:Ir:: -

Optimizatiof

Copyright© 2012, Intel Corporation. All rights reserved. [.
*Other brands and names are the property of their respective owners.

Intel® VTune™ Amplifier XE

Timeline Visualizes Thread Behavior

[y Transitions M CPU Time
Locks & Waits Hotspots Lightweight Hotspots

Qe = O 29,865 29.37s 29.38s 29.89 29.95i Ruler Area . 29.965 29.988 30.05s 30.1s 30.19
-

‘"I I I ST B SN S A S =% Frame TETTETE Y (ATETTET] ETETINT. i ETTRT TN T FETET. S 178 i m

WWVinMainCRTStartu. . i I I [IHIN &

]

Thread (Dx 1364) . I I i |“ I
[Thread (0x136c) [T
[Thread (0x1374) TTT NN 7= User Task
[Thread (0x137c) BilEl |||| ||[']:| 11 Transition
Thread (0x1334) TTTE T E | Thread Concurrency
1 1 Wk Concurrency
Frames over Time

@ running —— E—

:l Thread I W
-

Thread Concurrency

Frames over Time Mk Frame Rate

4

% Frame B 575 Transition | B - User Task

Frame Transition User Task

Start: 29.858s Duration: 0.017s wiWinMainCRTStartup ((hd2d4) to Thread (0:138¢) (29.899s to 29.899s) [Start: 20.958s Duration: 0.018s

Frame: 72 Sync Object: TBB Scheduler Task Type: Smoke:FrameWork:execute():: Other
Frame Domain: Smoke:Framework:execute() ll Object Creation File: taskmanagertbb.cpp Task End Call Stack: Framework:Execute

Frame Type: Good Object Creation Line: 318

Frame Rate: 59.8242179

Optional: Use APl to mark frames and user tasks

[L2 Mark Timeline]

Optional: Add a mark during collection

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® VTune™ Amplifier XE

See Profile Data On Source /7 Asm

™ Hotspots - View CPU time hotspots and stacks /& @ Intel VTune Amplifier X& 2011

& Analysis Target Analysis Type | |E2[Collection Log| | il Summary| |*+ Bottom-up | |*% Top-down Tree| |[E5| FireObje. %

D99l E
Line Source CPUTime # = Address Assembly CPUTime # =

185 e ect:- :checkCollision (V3 pos,VE pre Ox3BE8c fld 3t0, dword ptr [eapt+lxc] [].[][]45| I
" 04765 OxFEI0 £1d =t0, std 0993l —u
Time on Source / Asm : . s
0x3E892 fmulp st2, stl 0.757s [£
-
472 tdefine FMax std::max<float> Ox3894 fxch st0, stl 1.4555- i
. g S 0.561s | | 0x3836 fstp dword ptr [esp+0x3], std 0325 =
] | —
QU'Ck ASI’T] naV'gatlon — prev| G.846s 0x38%a £f1d st0, dword ptr [esp+0x40] U.Ulds| i
Select source to highlight Asm ¥\ Gulfite] Sehrp 3, svd o
e 3.503s [l 0x38a0 £1d st0, st0 0.010s| .
-I?'?E float paramZ = (ARBB.zMax — prevPos. 0.830s 0x38a2 frulp st2, st D.B3sl ™
478 kool neg = (rz < 0.£); U.ErlSsI Ox38a4 fach st0, stl U.Zﬂ'sl -
473 minP = FMax({neg? param? : paraml, mi 3.[]085. Ox3Bas fatp dword ptr [esptOxc], 3t0 UBZEsl g
480 maxl = FMin(neg? paraml : paramZ, ma 1.8?55. 0x38za foeomp st0, st U.0325| =
451 if (maxP > minP) { 0,9?25' Ox38ac y]
457 rx = 1 _£/({pos.x - prevPos_x); 0.252< Ox3Zae 3 H H .
| ' Right click for instruction
483 paraml = (ARBE xMin - prevPos.x) 0.2545| 0x38kb1
484 paramZ = (ARBE xMax - prevPos.x) U.Uﬂms| 0x38b3 Block 2:

reference manual

- i = 0.047s | 0x38b3 mov dl, Ozl
Quickly scroll to hot spots. p2el

}
4839 if (maxP > minP) { 0.5125| 0x3E8bb HOT
Selected 1 row(z): 08305 -

4 L) L (| L) 3 4 1L

0x38b5 lea ecx, ptr [esptixc] [].[]24s|
035k jmp 0x100038cl <Block 4>

Ox38kk Block

0.159s]|

Highlighted & row(s): 0.830s -

Click jump to scroll Asm

Intel® VTune™ Amplifier XE

Optimization
T, eif

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective ow

Lab 1, Step 4
Tuning T N
Activity 9-1,9-2 & 9-3 Programming

with Intel” Parallel Studio XE

C\CLASSFILES\Lab Sources\IPS Book\Chapter 9

http://www.amazon.co.uk/gp/reader/0470891653/ref=sib_dp_pt

& 10.254.198.28 - Remote Desktop Connection - = X

TIE— ComC— UTEr File Wiew Help "

A-E-SHdd @ I BT r S o
B % % % | 3 &]

Solution Explarer

: B Concurrency - H /. ©
=

Solution 'Salutionl' (0 % Analysis Target ? nalysis Type | | i Summary ottom-up L op-down Tree
p & Analysis T Analysis T Bt & B Top-down T

Grouping: [Function [all Skack

[Thread create stack

. CPU Tirne by Utilization Ove.. Wait Tirne by Utilizstion o| | BeediEedEe g 4 ddia D
Function / Call Stack Time Module Current stack is 91.6% of selection
Oidle B Poor OOk B Ideal @ Ower Didle @Poor OOk B Ideal [Ower =
EIPrintPragress 43.751; I D 070 44.569; DD ol | 91.6% (50.453s of 53.0315)
[GetPrimesompparallel_for@51 3727 (B 0.122: 4117 [9-1exe 9-1.exe!GetPrimes(int int) - ParallelPrime.cpp:Sir”
Eerite_nolock 1767s () 0s 0.763s 9-Lexe 9-1.exelmain - ParallelPrime.cppiGf
[+ SleepEx 0.271s 0s 0s KERMELBASE.dII 9-1.exe!_trmainCRTStartup - cril.c:266
[#lock 0,1505 00135 35.242; 9-1,exe 9-1,exe!_trmainCRTStartup - crtd.c:291
[RtlIntegerTolnicodeString 0.107s 0s 0s nitd|l.dll
Selected 0 row(s): -

4

Qo
rnainCRT Startup (0x16b
OMP Worker Thread #1
OMP Worker Thread #2
ORMP Worker Thread #3
OMP Worker Thread #4
= OMP Warker Thread #3
:?Solutlon Excplorer |8 84| -'-: OMP Warker Thread 5
T —— £ [OMP Worker Thread #7
> > _ . OrP W arker Thread #8
{; "‘ﬂ "b a ObP Worker Thread #9
shdviworkspaces oo OMP Worker Thread #1
Dldviworkspacescq OMP Worker Thread #1

Shdviyworkspacesi o
shdvyworkspacesi oo

hdvhworkspacesh og)
Shwdvyworkspacesi oo
shvdvhworkspaceshog) CPU Usage
Shdvhworkspacesiioog

hdvhworkspacesh og)
Shwdvyworkspacesi oo
\dvyworkspacesioq Thread Concurrency j
Shdvhworkspacesiioog i

Svdviworkspacesh og
Shwdvyworkspacesi oo
Shdviyworkspacesi o

00N o0ooonooonooooan

EAED

X & k-

1 2

Optimization

8/2/2012 Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Concurrency and Performance of Attempt 1

14.083s

Elapsed Time

is

Simultaneously Running Threads

Mew Amplifier XE Result}/NewAmp\ifier}{E Result’ r003cc | ron0cc! r007ti2 - dhry_2.c/ r06E2 | r00542 [ro04ti2 | r003t2 [r002ti2 | r00dtiz ro00ti2 | dhng_Le

and Waits & @

[Concurrency -

@ Analysis Target Analysis Trpe | | B8 Collection Log | | ¥ Summary a TG BT | +% Top-down Tree

Intel VTune Amplifier X& 20

JSync Object fFunction Wait Timew Wait Spin Module Object Type Obiject Creation Function Obiject Creation Modul [Thread create stack
(Il Dldle @Poor 0Ok Mideal ¢ Count Time
1 stackis) selected, Viewing < 1of 1 [
[E|OMP Critical _Proc_5:386 0xb65d9: 133.514s [N 599,977 120.451s OMP Critical Proc5 dhrystone.exe o _
EOMP Join Barrier _main:147 0xd24 0.247s 8 0.236s OMP Join Barrier main dhrystone.exe Current skack is 0.0% of selection
[+ Stream 0x7c2fc31d 0.007s Bt 0s Stream main dhrystone.exe | 0.0% (0s of 0s)
[[Unknown] 113 0 [13 [Unknown] [Unknown] [Unknown] [Unknown]
Selected 0 row(s):
4 [(N 1 | +
T — LN L LN e e s e T — A ALy LR LA A e iTh m
(o] 1s 25 35 45 55 65 7s 85 95 105 11s 125 135 14s 155 165 17s 18s reads
- 1 1 1 1 = 1 1 1 1 = 1 1 1 1 = 1 L 1 II 1 1 Ll = - Running
1.,:; mainCRTStartup (0xA60) : i L Kl] waiks
i OMP Warker Thread #... . ! l = OpentP R
= [OMP Waorker Thread #.. s I - Transitions
+| Thread C
Thread Concurrency]| read toncurre
Uk Concurrenc

Rln filbars ara annbiad

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective own

Fimls viear Fomebiene

Optimization

Zoom-in on time line shows reason
for poor concurrency

QOEQFQ-Qe 1113 Liltds LIS 1[1L11162675s] 11117 + | [4iThreads
mainCR TStartup (Dx660) :- - “ I ; f:;:;ng
OMP Worker Thread #..,. ' ' ' ¥ OpenMP Regions
OMP Warker Thread #... . . - Transitions
_;-:,r; OMP ‘Waorker Thread #... . . . Thread Concurrency
E OMP Worker Thread #... u ' ' ks Concurrency

OMP WWarker Thread #... . . .:
OMP Worker Thread #... - . .
OMP Worker Thread #... . - .

Thread Concurrency

1 1™ Amrnirramese |

Copyright© 2012, Intel Corporation. All righ
*Other brands and names are the property of their

Concurrency and Performance of Attempt 2

A014s 22
g |
E i
= 0
g i
2 v
& £
= B
[m} a0
T
I
I
I
|
0
I
s | — —
L] 1 2 3 4 5 [7 L] L] 1 11 12
Ideal Over
P &y
Simultaneously Running Threads
. i i 5w
;2';“‘5?:(‘:“ fFunction] WIRuTR c‘:;'r'“ Spin Time Module Object Type Object Creation Function Object Creation Modul |7
Oidie @Poor OOk @Ideal B¢ O stack(s) selected,
OMP For Barrier main:199 0x26f4 4.495¢ (N | 8 950.213ms OMP For Bartier _main dhry exe
MP Explicit Barrier _ma ox 01575 3 2324ms OMP Explicit Barrier main ¥ exe Current stack is 100
OMP Join Barrier _main:199 Oxefc 0.094s 4 29.7850ms OMP Join Barrier __kmp_join_barrier libiompSmd.dil
[+ OMP Join Barrier _main:129 0857 0.070s 4 18.465ms OMP Join Barrier main ¥ EHE
Stream 0xba9b3009 0.0075 58 Oms Stream main dhiystone.exe & Mo stack informati
I [Unknown] os] oms [Unknovm] [Unknovn] [Unknown]
|f you have time
I Selected 1row(s): 4.4955 8 950.213ms
<lal

Results from the
lab you
have just finished

ImainCRTStartup (0xd7a)
QP Worker Thread #...
(OMP Worker Thread #...
(OMP Worker Thread #.
(OMP Worker Thread #...
(OMP Worker Thread #...
(OMP Worker Thread #.
(OMP Worker Thread #...

Threads

Thread Concurreancy

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk
are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

78

78/2/2012 Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

	Intel Software Tools
	Slide Number 2
	Speedup using parallelism
	Slide Number 4
	Slide Number 5
	Four Different Ways to Find the Hotspots
	Using the loop profiler
	Using the Auto-Parallelizer�
	Intel Parallel Advisor – Survey Target
	Use Amplifier XE
	Advantages & Disadvantages of different hotspot methods
	Slide Number 12
	Hands-on Lab
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Interprocedural Optimisation
	Slide Number 20
	Key Questions – Implement
	Language to help parallelism
	Structured Parallel Programming�Michael McCool, James Reinders, Arch Robison�Publisher: Morgan Kaufmann (31 July 2012), ISBN-10: 0124159931 �
	Introduction to Concurrency in Programming Languages�Matthew J. Sottile, Timothy G. Mattson, Craig E. Rasmussen �Publisher: Chapman and Hall/CRC (7 Oct 2009). ISBN:ISBN-10: 1420072137
	Patterns for Parallel Programming
	Intel Threading Building Blocks�James Reinders, �O'Reilly Media; 1 edition (19 July 2007) ISBN-10: 0596514808 �
	Scope of Chapter 6
	What Is OpenMP?
	Programming Model
	omp for Construct
	Advantage of Parallel Sections
	The Private Clause
	Schedule Clause Example
	Implementing Parallelism
	The Beauty of Lambda
	An example lambda function
	Parallelizing for loops
	Parallelizing while loops
	Parallelizing sections and functions
	Parallelizing recursive functions
	Parallelizing recursive functions
	Parallelizing pipelined functions
	Parallelizing pipelined functions
	Parallelizing Linked Lists
	Slide Number 45
	Slide Number 46
	Ways to Find your Parallel Errors
	Dynamic vs Static Error Detection
	Inspector XE – Threading Errors & warnings
	Inspector XE – Memory Errors & warnings
	Inspector XE - Standalone GUI
	Problem State Lifecycle�Makes problems easier to manage
	Suppressions Manage False Errors
	Hands-on Lab
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Inspector APIs for memory growth and leak detection.
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Intel® VTune™ Amplifier XE�Performance Profiler
	Amplifier XE – ‘Parallel’ Analysis Types
	Slide Number 66
	Intel® VTune™ Amplifier XE �Get a quick snapshot
	Intel® VTune™ Amplifier XE �Identify hotspots
	Intel® VTune™ Amplifier XE �Identify threading inefficiency
	Intel® VTune™ Amplifier XE �Find Answers Fast
	Intel® VTune™ Amplifier XE �Timeline Visualizes Thread Behavior
	Intel® VTune™ Amplifier XE �See Profile Data On Source / Asm
	Hands-on Lab
	Slide Number 74
	Concurrency and Performance of Attempt 1
	Zoom-in on time line shows reason for poor concurrency
	Concurrency and Performance of Attempt 2
	Slide Number 78
	Slide Number 79

