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SciPy 
•  NumPy provides arrays, basic linear algebra, random number generation, and 

Fourier transforms 

•  SciPy builds on NumPy (e.g. by using arrays) and expands this with (additional) 
routines for: 
•  Numerical integration 
•  Interpolation 
•  Linear algebra and wrappers to LAPACK & BLAS 
•  Sparse linear algebra 
•  Image processing 
•  Optimisation 
•  Signal processing 
•  Statistical functions 
•  Spatial data structures and algorithms 
•  Airy functions 

•  Note: no PDE solvers (though other packages exist)  



Integration  
•  Routines for numerical integration – single, double and triple 

integrals  
•  Function to integrate can be given by function object or by fixed 

samples  
•  e.g. solve the ODE  

•  dy/dt = -2y between t = 0..4, with the initial condition y(t=0) = 1 
import numpy as np!
from scipy.integrate import odeint!
def calc_derivative(ypos, time):!

!return -2*ypos!
time_vec = np.linspace(0, 4, 40)!
yvec = odeint(calc_derivative, 1, time_vec)!
pl.plot(time_vec, yvec)!



Optimisation 
•  Several classical optimisation algorithms 

•  Quasi-Newton type optimisations 
•  Least squares fitting 
•  Simulated annealing  
•  General purpose root finding 

•  Rosenbrock function 

>>> from scipy.optimize import fmin  
>>> def rosen(x):  
... return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0) !
>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]  
>>> xopt = fmin(rosen, x0, xtol=1e-8) !
 Optimization terminated successfully.!
         Current function value: 0.000000!
         Iterations: 339!
         Function evaluations: 571!



Special functions  
• SciPy contains huge set of special functions – Bessel 

functions 
•  Legendre functions 
•  Gamma functions 
•  Bessel function à  

!
>>> from scipy.special import * !
>>> x = np.linspace(0, 5, 20) !
>>> plot(x, jv(1, x))  
>>> plot(x, jv(2, x)) !
 !



Linear Algebra 
•  Wider set of linear algebra operations than in Numpy  

•  decompositions, 
•  matrix exponentials  

•  Routines also for sparse matrices 
•  storage formats 
•  iterative algorithms  

!
!

>>> import numpy as np  
>>> from scipy.sparse.linalg import LinearOperator, cg !
>>> # Define “Sparse” matrix-vector product !
>>> def mv(v): !
>>> !return np.array([ 2*v[0], 3*v[1]]) !
>>> A = LinearOperator( (2,2), matvec=mv, dtype=float )  
>>> b = np.array((4.0, 1.0))  
>>> x = cg(A, b) # Solve linear equation Ax = b with conjugate gradient!
>>> x!
(array([ 2.        ,  0.33333333]), 0)!
!



Other packages 
• Pandas 

•  Offers R-like statistical analysis of numerical tables and time series 
• SymPy 

•  Python library for symbolic computing 
•  scikit-image  

•  Advanced image processing 
•  scikit-learn 

•  Package for machine learning 
• Sage 

•  Open source replacement for Mathematica / Maple / Matlab 
   (built using Python) 


