
Messages

Messages

• A message contains a number of elements of some

particular datatype.

• MPI datatypes:

• Basic types.

• Derived types.

• Derived types can be built up from basic types.

• C types are different from Fortran types.

MPI Basic Datatypes - C
MPI Datatype C datatype

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE

MPI_PACKED

MPI Basic Datatypes - Fortran

MPI Datatype Fortran Datatype

MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

MPI_BYTE

MPI_PACKED

Point-to-Point

Communication

Point-to-Point Communication

• Communication between two processes.

• Source process sends message to destination process.

• Communication takes place within a communicator.

• Destination process is identified by its rank in the communicator.

0

1 2
5

3
4

Source

Destination

Communicator

Communication modes

Sender mode Notes

Synchronous

send
Only completes when the receive has completed.

Buffered send Always completes (unless an error occurs), irrespective of receiver.

Standard send Either synchronous or buffered.

Ready send
Always completes (unless an error occurs), irrespective of whether the

receive has completed.

Receive Completes when a message has arrived.

MPI Sender Modes

OPERATION MPI CALL

Standard send MPI_Send

Synchronous send MPI_Ssend

Buffered send MPI_Bsend

Ready send MPI_Rsend

Receive MPI_Recv

Sending a message

• C:

int MPI_Ssend(void *buf, int count,

MPI_Datatype datatype,

int dest, int tag,

MPI_Comm comm)

• Fortran:

MPI_SSEND(BUF, COUNT, DATATYPE, DEST,

TAG, COMM, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG

INTEGER COMM, IERROR

Receiving a message

• C:

int MPI_Recv(void *buf, int count,

MPI_Datatype datatype,

int source, int tag,

MPI_Comm comm, MPI_Status *status)

• Fortran:

MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM,

STATUS, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM,

STATUS(MPI_STATUS_SIZE), IERROR

Synchronous Blocking Message-Passing

• Processes synchronise.

• Sender process specifies the synchronous mode.

• Blocking both processes wait until the transaction has

completed.

For a communication to succeed:

• Sender must specify a valid destination rank.

• Receiver must specify a valid source rank.

• The communicator must be the same.

• Tags must match.

• Message types must match.

• Receiver's buffer must be large enough.

Wildcarding

• Receiver can wildcard.

• To receive from any source MPI_ANY_SOURCE

• To receive with any tag MPI_ANY_TAG

• Actual source and tag are returned in the receiver's
status parameter.

Communication Envelope

Senders Address

For the attention of:

Data

Item 1

Item 2

Item 3

Destination Address

Communication Envelope Information

• Envelope information is returned from MPI_RECV as
status

• Information includes:
• Source: status.MPI_SOURCE or status(MPI_SOURCE)

• Tag: status.MPI_TAG or status(MPI_TAG)

• Count: MPI_Get_count or MPI_GET_COUNT

Received Message Count

• C:

int MPI_Get_count(MPI_Status *status,

MPI_Datatype datatype,

int *count)

• Fortran:

MPI_GET_COUNT(STATUS, DATATYPE, COUNT,
IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT,
IERROR

Message Order Preservation

• Messages do not overtake each other.

• This is true even for non-synchronous sends.

1
5

2

3

0

4

Communicator

Exercise – Calculation of Pi

• See Exercise 2 on the exercise sheet

• Illustrates how to divide work based on rank
• and how to send point-to-point messages in an SPMD code

• Notes:
• the value of N in the expansion of pi is not the same as the number

of processors

• you should expect to write a program such as N=100 running on 4
processors

• your code should be able to run on any number of processors

• do not hard code the number of processors in your program!

• If you finish the pi example you may want to try Exercise 3
(ping-pong) but it is not essential

Timers
• C:

double MPI_Wtime(void);

• Fortran:

DOUBLE PRECISION MPI_WTIME()

• Time is measured in seconds.

• Time to perform a task is measured by consulting the timer before and
after.

• Modify your program to measure its execution time and print it out.

