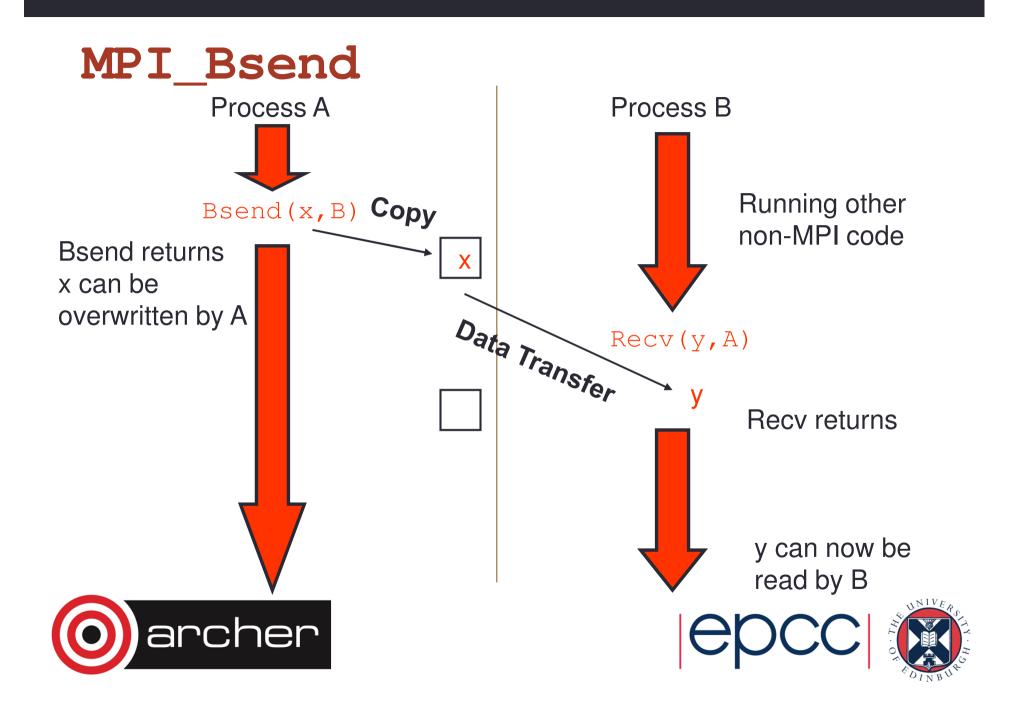
Message Passing Programming

Modes, Tags and Communicators

Overview

- Lecture will cover
 - explanation of MPI modes (Ssend, Bsend and Send)
 - meaning and use of message tags
 - rationale for MPI communicators
- These are all commonly misunderstood
 - essential for all programmers to understand modes
 - often useful to use tags
 - certain cases benefit from exploiting different communicators

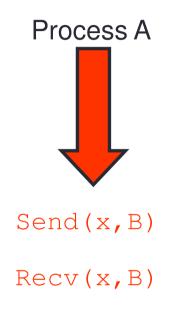

Modes

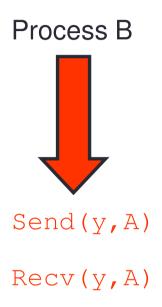
- MPI_Ssend (Synchronous Send)
 - guaranteed to be synchronous
 - routine will not return until message has been delivered
- MPI_Bsend (Buffered Send)
 - guaranteed to be asynchronous
 - routine returns before the message is delivered
 - system copies data into a buffer and sends it later on
- MPI_Send (standard Send)
 - may be implemented as synchronous or asynchronous send
 - this causes a lot of confusion (see later)

MPI Ssend Process A Process B Running other Ssend(x, B) non-MPI code Wait in Ssend Recv(y,A) **Data Transfer** Ssend returns Recv returns x can be y can now be overwritten by A read by B

Notes

- Recv is always synchronous
 - if process B issued Recv before the Bsend from process A, then B would wait in the Recv until Bsend was issued
- Where does the buffer space come from?
 - for Bsend, the user provides a single large block of memory
 - make this available to MPI using MPI_Buffer_attach
- If A issues another Bsend before the Recv
 - system tries to store message in free space in the buffer
 - if there is not enough space then Bsend will FAIL!


Send


- Problems
 - Ssend runs the risk of deadlock
 - Bsend less likely to deadlock, and your code may run faster, but
 - the user must supply the buffer space
 - the routine will FAIL if this buffering is exhausted
- MPI_Send tries to solve these problems
 - buffer space is provided by the system
 - Send will normally be asynchronous (like Bsend)
 - if buffer is full, Send becomes synchronous (like Ssend)
- MPI_Send routine is unlikely to fail
 - but could cause your program to deadlock if buffering runs out

MPI_Send

- This code is NOT guaranteed to work
 - will deadlock if Send is synchronous
 - is guaranteed to deadlock if you used Ssend!

Solutions

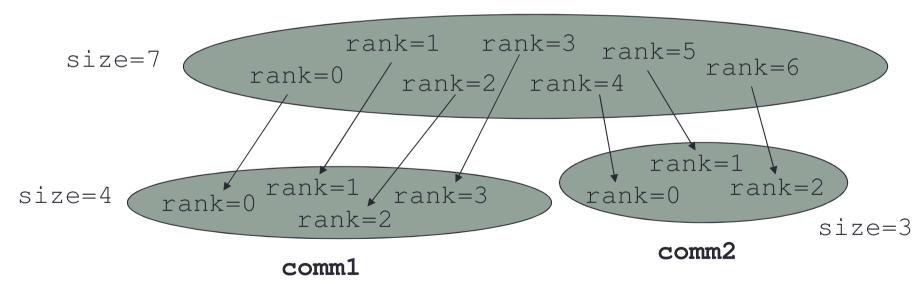
- To avoid deadlock
 - either match sends and receives explicitly
 - eg for ping-pong
 - process A sends then receives
 - process B receives then sends
- For a more general solution use non-blocking communications (see later)
- For this course you should program with Ssend
 - more likely to pick up bugs such as deadlock than Send

Tags

- Every message can have a tag
 - this is a non-negative integer value
 - not everyone uses them
 - many MPI programs set all tags to zero
- Tags can be useful in some situations
 - can choose to receive messages only of a given tag
- Most commonly used with MPI_ANY_TAG
 - receives the most recent message regardless of the tag
 - user then finds out the actual value by looking at the status

Communicators

- All MPI communications take place within a communicator
 - a communicator is fundamentally a group of processes
 - there is only one pre-defined communicator: MPI_COMM_WORLD which contains ALL the processes
- A message can ONLY be received within the same communicator from which it was sent
 - unlike tags, it is not possible to wildcard on comm



Uses of Communicators (i)

- Can split MPI_COMM_WORLD into pieces
 - each process has a new rank within each sub-communicator
 - guarantees messages from the different pieces do not interact
 - can attempt to do this using tags but there are no guarantees

MPI COMM WORLD

Uses of Communicators (ii)

- Can make a copy of MPI_COMM_WORLD
 - containing all the same processes but in a new communicator
- Enables processes to communicate with each other safely within a piece of code
 - guaranteed that messages cannot be received by other code
 - this is essential for people writing parallel libraries (eg a Fast Fourier Transform) to stop library messages becoming mixed up with user messages
 - user cannot intercept the the library messages if the library keeps the identity of the new communicator a secret
 - not safe to simply try and reserve tag values due to wildcarding

Summary (i)

- Question: Why bother with all these send modes?
- Answer
 - it is a little complicated, but you should make sure you understand
 - Ssend and Bsend are clear
 - map directly onto synchronous and asynchronous sends
 - Send can be either synchronous or asynchronous
 - MPI is trying to be helpful here, giving you the benefits of Bsend if there is sufficient system memory available, but not failing completely if buffer space runs out
 - in practice this leads to endless confusion!
- The amount of system buffer space is variable
 - programs that run on one machine may deadlock on another
 - you should NEVER assume that Send is asynchronous!

Summary (ii)

- Question: What are the tags for?
- Answer
 - if you don't need them don't use them!
 - perfectly acceptable to set all tags to zero
 - can be useful for debugging
 - eg always tag messages with the rank of the sender

Summary (iii)

- Question: Can I just use MPI_COMM_WORLD?
- Answer
 - yes: many people never need to create new communicators in their MPI programs
 - however, it is probably bad practice to specify MPI_COMM_WORLD explicitly in your routines
 - using a variable will allow for greater flexibility later on, eg:

