
Shared Memory

Programming

Parallel Regions

Parallel region directive

• Code within a parallel region is executed by all threads.

• Syntax:

Fortran: !$OMP PARALLEL

block

!$OMP END PARALLEL

C/C++: #pragma omp parallel

{

block

}

Parallel region directive (cont)

Example:

call fred()

!$OMP PARALLEL

call billy()

!$OMP END PARALLEL

call daisy()

Clauses

• Specify additional information in the parallel region directive through
clauses:

Fortran : !$OMP PARALLEL [clauses]

C/C++: #pragma omp parallel [clauses]

• Clauses are comma or space separated in Fortran, space separated
in C/C++.

Shared and private variables

• Inside a parallel region, variables can be either shared (all threads
see same copy) or private (each thread has its own copy).

• Shared, private and default clauses

Fortran: SHARED(list)

PRIVATE(list)

DEFAULT(SHARED|PRIVATE|NONE)

C/C++: shared(list)

private(list)

default(shared|none)

Shared and private (cont)
Example: each thread initialises its own column of a shared array:

!$OMP PARALLEL DEFAULT(NONE),PRIVATE(I,MYID),

!$OMP& SHARED(A,N)

myid = omp_get_thread_num() + 1

do i = 1,n

a(i,myid) = 1.0

end do

!$OMP END PARALLEL

0 2 31

i

Shared and private (cont)

• How do we decide which variables should be shared and which
private?

• Write-before-read scalars - usually private

• e.g. loop indices and loop temporaries

• Read-only variables - shared

• Main arrays - shared

• Sometimes either is semantically OK, but there may be performance

implications in making the choice.

• N.B. can have private arrays as well as scalars

• making large arrays private may cause the program to exhaust memory

resources

• Making this decision is often the hardest part of writing OpenMP code

Initialising private variables

• Private variables are uninitialised at the start of the parallel region.

• If we wish to initialise them, we use the FIRSTPRIVATE clause:

Fortran: FIRSTPRIVATE(list)

C/C++: firstprivate(list)

Initialising private variables (cont)
Example:

b = 23.0;

.

#pragma omp parallel firstprivate(b), private(i,myid)

{

myid = omp_get_thread_num();

for (i=0; i<n; i++){

b += c[myid][i];

}

c[myid][n] = b;

}

Reductions

• A reduction produces a single value from associative operations
such as addition, multiplication, max, min, and, or.

• Would like each thread to reduce into a private copy, then reduce all
these to give final result.

• Use REDUCTION clause:

Fortran: REDUCTION(op:list)

C/C++: reduction(op:list)

• Can have reduction arrays in Fortran, but not in C/C++

Reductions (cont.)
Example:

b = 10

!$OMP PARALLEL REDUCTION(+:b),

!$OMP& PRIVATE(I,MYID)

myid = omp_get_thread_num() + 1

do i = 1,n

b = b + c(i,myid)

end do

!$OMP END PARALLEL

a = b

Each thread gets a private copy

of b, initialised to 0

All accesses inside the parallel

region are to the private copies

At the end of the parallel region, all

the private copies are added into the

original variable

Value in original variable is saved

IF clause

• We can make the parallel region directive itself conditional.

• Can be useful if there is not always enough work to make parallelism

worthwhile.

Fortran: IF (scalar logical expression)

C/C++: if (scalar expression)

IF clause (cont.)

Example:

#pragma omp parallel if (tasks > 1000)

{

while(tasks > 0) donexttask();

}

Multi-line directives

• Fortran: fixed source form

!$OMP PARALLEL DEFAULT(NONE),PRIVATE(I,MYID),

!$OMP& SHARED(A,N)

• Fortran: free source form

!$OMP PARALLEL DEFAULT(NONE),PRIVATE(I,MYID), &

!$OMP SHARED(A,N)

• C/C++:
#pragma omp parallel default(none) \

private(i,myid) shared(a,n)

Useful functions

• Often useful to find out number of threads being used.

Fortran:

USE OMP_LIB

INTEGER FUNCTION OMP_GET_NUM_THREADS()

C/C++:

#include <omp.h>

int omp_get_num_threads(void);

• Important note: returns 1 if called outside parallel region!

Useful functions (cont)

• Also useful to find out number of the executing thread.

Fortran:

USE OMP_LIB

INTEGER FUNCTION OMP_GET_THREAD_NUM()

C/C++:

#include <omp.h>

int omp_get_thread_num(void)

• Returns values between 0 and OMP_GET_NUM_THREADS()- 1

Practical Session

Area of the Mandelbrot set

• Aim: introduction to using parallel regions.

• Estimate the area of the Mandelbrot set by Monte Carlo sampling.

• Generate a set of random complex numbers in a box surrounding
the set

• Test each number to see if it is in the set or not.

• Ratio of points inside to total number of points gives an estimate of
the area.

• Testing of points is independent - parallelise with a parallel region!

