
Building Blocks
CPUs, Memory and Accelerators







What is a computer?
• Device that manipulates data according to a set of instructions

• Simple mathematical operations 

• Many operations per second

• Can be programmed (i.e. instructions sets than can be saved and used 

when needed)

• Embedded most common, Personal Computer what most think of as a 

computer

• Digital

• Information stored in discrete quantities

• 0 and 1 represented by presence or absence of electricity

• Easy to create electronic circuits based on this



Outline

• Computer layout

• CPU and Memory

• What does performance depend on?

• Limits to performance

• Silicon-level parallelism

• Single Instruction Multiple Data (SIMD/Vector)

• Multicore

• Symmetric Multi-threading (SMT)

• Accelerators (GPGPU and Xeon Phi)

• What are they good for?



Computer Layout

How do all the bits interact and which ones matter?



Anatomy of a computer





Performance

• The performance (time to solution) on a single computer 

can depend on:

• Clock speed – how fast the processor is

• Floating point unit – how many operands can be operated on and 
what operations can be performed?

• Memory latency – how fast can we access the data?

• Memory bandwidth – how much data can we access in one go?

• Input/Output (IO) to storage – how quickly can we access 
persistent data (files)?



Performance (cont.)

• Application performance often described as:

• Compute bound

• Memory bound

• IO bound

• (Communication bound – more on this later…)



Limits to performance 

• Scientific simulation and modelling drive the need for 

greater computing power.

• Single systems can not be made that had enough 

resource for the simulations needed.

• Making faster single chip is difficult due to both physical limitations 
and cost.

• Adding more memory to single chip is expensive and leads to 
complexity.

• Solution: parallel computing – divide up the work among 

numerous linked systems.

• HPC has become synonymous with parallel computing



Silicon-level parallelism

What does Moore’s Law mean anyway?



Moore’s Law

• Number of 
transistors doubles 
every 18 months

• What to do with all 
the extra silicon 
real estate?
• Wider FPU, 

multicore and 
cache



Single Instruction Multiple Data (SIMD)

• For example, vector addition:



Symmetric Multi-threading (SMT)

• Some hardware supports running more processes than 

there are physical cores

• Known as Symmetric Multi-threading (SMT) or 

hyperthreading

• Threading in this case can be a misnomer as it can refer 

to processes as well as threads

• These are hardware threads, not software threads.

• Intel Xeon supports 2-way SMT

• IBM BlueGene/Q 4-way SMT



Multicore



Intel Xeon E5-2600 – 8 cores HT



Chip types and manufacturers

• x86 – Intel and AMD
• “PC” commodity processors, SIMD (SSE, AVX) FPU, multicore, 

SMT (Intel), Intel currently dominate the HPC space. 

• Power – IBM
• Used in high-end HPC, high clock speed (direct water cooled), 

SIMD FPU, multicore, SMT, not as important anymore.

• PowerPC – IBM BlueGene
• Low clock speed, SIMD FPU, multicore, high level of SMT.

• SPARC – Fujitsu

• ARM – Lots of manufacturers
• Not yet relevant to HPC (weak FP Unit)



Accelerators

Go-faster stripes



Anatomy

• An Accelerator is a additional resource that can be used 

to off-load heavy floating-point calculation

• It is an additional processing engine that is attached to the standard 
processor

• It has its own floating point units and memory



AMD 12-core CPU
• Not much space on CPU is dedicated to compute

= compute unit

(= core)



NVIDIA Fermi GPU

• GPU dedicates much 

more space to 

compute

• At expense of caches, 
controllers, sophistication 
etc 

= compute unit

(= SM 

= 32 CUDA cores)



Intel Xeon Phi
• As does Xeon Phi

= compute

unit

(= core)



Memory

• For many applications, performance is very sensitive to memory 
bandwidth

• GPUs and Intel Phi both use Graphics memory: much higher 
bandwidth than standard CPU memory

CPUs use DRAM GPUs and Xeon Phi use Graphics 

DRAM



Summary - What is automatic?

• Which features are managed by hardware/software and 

which does the user/programmer control?

• Cache and memory – automatically managed

• SIMD/Vector parallelism – automatically produced by compiler

• SMT – automatically managed

• Multicore parallelism – manually specified by the user

• Use of accelerators – manually specified by the user


