
David Henty

d.henty@epcc.ed.ac.uk

EPCC, University of Edinburgh

Message-Passing

Programming

with MPI

Message-Passing Concepts

Message-Passing Programming: Lecture 1 2

Overview

• This lecture will cover

– message passing model

– SPMD

– communication modes

– collective communications

http://www.epcc.ed.ac.uk/

Programming Models

Message-Passing Programming: Lecture 1 3

Control flow
Variables

Arrays

Human-readable

Serial Programming

Concepts

if/then/else

Languages

Java Fortran
struct

Python
C/C++

Subroutines

Implementations

icc
pgcc -fast

crayftn

gcc -O3

OO

Processes

SPMD

Concepts

Libraries

Implementations

Intel MPI

Message-Passing Parallel Programming

Groups

Send/Receive

Collectives

javac

MPI

MPICH2

OpenMPI Cray MPI

IBM MPI craycc

MPI_Init()

http://www.epcc.ed.ac.uk/

Message-Passing Programming: Lecture 1 4

Message Passing Model

• The message passing model is based on the notion of

processes

– can think of a process as an instance of a running program, together

with the program’s data

• In the message passing model, parallelism is achieved by

having many processes co-operate on the same task

• Each process has access only to its own data

– ie all variables are private

• Processes communicate with each other by sending and

receiving messages

– typically library calls from a conventional sequential language

http://www.epcc.ed.ac.uk/

Sequential Paradigm

Message-Passing Programming: Lecture 1 5

M

P

Memory

Processor

Process

http://www.epcc.ed.ac.uk/

Parallel Paradigm

Message-Passing Programming: Lecture 1 6

Processes

Message Passing Interface

Communication Network

0 1 2 3

http://www.epcc.ed.ac.uk/

Distributed-Memory Architectures

Message-Passing Programming: Lecture 1 7

P M
P M P M

P M

P M P M

P M

P M
Interconnect

http://www.epcc.ed.ac.uk/

Message-Passing Programming: Lecture 1 8

Process Communication

a=23 Recv(1,b)

Process 1 Process 2

23

23

24

23

Program

Data

Send(2,a) a=b+1

http://www.epcc.ed.ac.uk/

Message-Passing Programming: Lecture 1 9

SPMD

• Most message passing programs use the Single-Program-

Multiple-Data (SPMD) model

• All processes run (their own copy of) the same program

• Each process has a separate copy of the data

• To make this useful, each process has a unique identifier

• Processes can follow different control paths through the

program, depending on their process ID

• Usually run one process per processor / core

http://www.epcc.ed.ac.uk/

Emulating General Message Passing (C)

main (int argc, char **argv)

{

 if (controller_process)

 {

 Controller(/* Arguments */);

 }

 else

 {

 Worker (/* Arguments */);

 }

}

Message-Passing Programming: Lecture 1 10

http://www.epcc.ed.ac.uk/

Emulating General Message Passing (F)

PROGRAM SPMD

 IF (controller_process) THEN

 CALL CONTROLLER (! Arguments !)

 ELSE

 CALL WORKER (! Arguments !)

 ENDIF

END PROGRAM SPMD

Message-Passing Programming: Lecture 1 11

http://www.epcc.ed.ac.uk/

Message-Passing Programming: Lecture 1 12

Messages

• A message transfers a number of data items of a certain type

from the memory of one process to the memory of another

process

• A message typically contains

– the ID of the sending processor

– the ID of the receiving processor

– the type of the data items

– the number of data items

– the data itself

– a message type identifier

http://www.epcc.ed.ac.uk/

Message-Passing Programming: Lecture 1 13

Communication modes

• Sending a message can either be synchronous or

asynchronous

• A synchronous send is not completed until the message has

started to be received

• An asynchronous send completes as soon as the message

has gone

• Receives are usually synchronous - the receiving process

must wait until the message arrives

http://www.epcc.ed.ac.uk/

Message-Passing Programming: Lecture 1 14

Synchronous send

• Analogy with faxing a letter.

• Know when letter has started to be received.

http://www.epcc.ed.ac.uk/

Message-Passing Programming: Lecture 1 15

Asynchronous send

• Analogy with posting a letter.

• Only know when letter has been posted, not when it has

been received.

http://www.epcc.ed.ac.uk/

Message-Passing Programming: Lecture 1 16

Point-to-Point Communications

• We have considered two processes

– one sender

– one receiver

• This is called point-to-point communication

– simplest form of message passing

– relies on matching send and receive

• Close analogy to sending personal emails

http://www.epcc.ed.ac.uk/

Message-Passing Programming: Lecture 1 17

Collective Communications

• A simple message communicates between two processes

• There are many instances where communication between

groups of processes is required

• Can be built from simple messages, but often implemented

separately, for efficiency

http://www.epcc.ed.ac.uk/

Barrier: global synchronisation

Message-Passing Programming: Lecture 1 18

Ba rrier

Barrier

Barrier

http://www.epcc.ed.ac.uk/

Broadcast: one to all communication

Message-Passing Programming: Lecture 1 19

http://www.epcc.ed.ac.uk/

Message-Passing Programming: Lecture 1 20

8

8 8

8

8

8

Broadcast

• From one process to all others

http://www.epcc.ed.ac.uk/

Message-Passing Programming: Lecture 1 21

0 1 2 3 4 5

0

1

3

4

5

2

Scatter

• Information scattered to many processes

http://www.epcc.ed.ac.uk/

Message-Passing Programming: Lecture 1 22

0 1 2 3 4 5

0

1

3

4

5

2

Gather

• Information gathered onto one process

http://www.epcc.ed.ac.uk/

Reduction Operations

• Combine data from several processes to form a single result

Message-Passing Programming: Lecture 1 23

Strike?

http://www.epcc.ed.ac.uk/

Message-Passing Programming: Lecture 1 24

0

1

3

4

5

2

15

Reduction

• Form a global sum, product, max, min, etc.

http://www.epcc.ed.ac.uk/

Launching a Message-Passing Program

• Write a single piece of source code
– with calls to message-passing functions such as send / receive

• Compile with a standard compiler and link to a message-
passing library provided for you
– both open-source and vendor-supplied libraries exist

• Run multiple copies of same executable on parallel machine
– each copy is a separate process

– each has its own private data completely distinct from others

– each copy can be at a completely different line in the program

• Running is usually done via a launcher program
– “please run N copies of my executable called program.exe”

Message-Passing Programming: Lecture 1 25

http://www.epcc.ed.ac.uk/

Message-Passing Programming: Lecture 1 26

Issues

• Sends and receives must match

– danger of deadlock

– program will stall (forever!)

• Possible to write very complicated programs, but …

– most scientific codes have a simple structure

– often results in simple communications patterns

• Use collective communications where possible

– may be implemented in efficient ways

http://www.epcc.ed.ac.uk/

Message-Passing Programming: Lecture 1 27

Summary (i)

• Messages are the only form of communication

– all communication is therefore explicit

• Most systems use the SPMD model

– all processes run exactly the same code

– each has a unique ID

– processes can take different branches in the same codes

• Basic communications form is point-to-point

– collective communications implement more complicated patterns that

often occur in many codes

http://www.epcc.ed.ac.uk/

Summary (ii)

• Message-Passing is a programming model

– that is implemented by MPI

– the Message-Passing Interface is a library of function/subroutine calls

• Essential to understand the basic concepts

– private variables

– explicit communications

– SPMD

• Major difficulty is understanding the Message-Passing model

– a very different model to sequential programming

Message-Passing Programming: Lecture 1 28

if (x < 0)

 print(“Error”);

 exit;

http://www.epcc.ed.ac.uk/

