
ARCHER Single Node
Optimisation
Optimising for the Memory Hierarchy

Slides contributed by Cray and EPCC

Overview
• Motivation
•  Types of memory structures
• Reducing memory accesses
• Utilizing Caches
• Write optimisations
• Prefetching
• Pointer aliasing

Motivation
• Why is memory structure important?

•  With current hardware memory access has become the most
significant resource impacting program performance.
•  Changing memory structures can have a big impact on code

performance.
•  Memory structures are frequently global to the program

•  Different code sections communicate via memory structures.
•  The programming cost of changing a memory structure can be very

high.

Programmer’s perspective:
• Memory structures are the programmers responsibility

•  At best the compiler can add small amounts of padding in limited
circumstances.

•  Compilers can (and hopefully will) try to make best use of the
memory structures that you specify (e.g. uni-modular
transformations)

• Changing the memory structures you specify may allow
the compiler to generate better code.

Types of data structure
• Arrays
• Pointer arrays
•  records/structures
•  Trees and lists
• Objects

Arrays
• Arrays are large blocks of memory indexed by integer

index
• Probably the most common data structure used in HPC

codes
• Good for representing regularly discretised versions of

dense continuous data
𝑓(𝑥,𝑦,𝑧)→𝐹[𝑖][𝑗][𝑘]

Arrays
•  Multi dimensional arrays use multiple indexes (shorthand)

REAL A(100,100,100) REAL A(1000000)
A (i,j,k) = 7.0 A(i+100*j+10000*k) = 7.0

float A[100][100][100]; float A[1000000];
A [i][j][k] = 7.0 A(k+100*j+10000*i) = 7.0

• Address calculation requires computation but still
relatively cheap.

• Compilers have better chance to optimise where
dimension sizes are known at compile time.

Arrays
• Many codes loop over array elements

•  Data access pattern is regular and easy to predict

• Unless loop nest order and array index order match the
access pattern may not be optimal for cache re-use.
•  Compiler can often address these problems by transforming the

loops.
•  But sometimes can do a better job when provided with a more

cache-friendly index order.

Dynamic sized arrays (Fortran)
• Not always possible/desirable to fix array sizes at compile

time
•  Fortran allows arrays to be dynamically sized based on subroutine

arguments.

• Address calculation can still be optimised using CSA.
• Size of slowest moving index is not needed in address

computation.
•  Fortran actually allows this dimension to be unspecified in

subroutine arguments (assumed size arrays)

Dynamic sized arrays (C)
• C requires array dimensions to be known at compile time.
• However can make slowest dimension variable with

pointers and typedef
typedef float Mat[2][2];
Mat *data =(Mat *) malloc(n*sizeof(Mat));
for(i=0;i<n;i++){
 for(j=0;j<2;j++){
 for(k=0;k<2;k++){
 data[i][j][k] = 12.0;
 }
 }
}

Pointer arrays
•  Alternative to multi-dimensional arrays

•  Pointer to: array of pointers to: array of pointers to: …. Data

•  Note reverse index order to previous example!

float ***data;
data = (float ***) malloc(2*sizeof(float **));
for(i=0;i<2;i++){
 data[i]=(float **) malloc(2*sizeof(float *));
 for(j=0;j<2;j++){
 data[i][j] = (float *) malloc(n*sizeof(float));
 for(k=0;k<n;k++){
 data[i][j][k] = 12.0;
 }
 }
}

Pointer arrays II
•  In C the use-syntax is the same as for arrays

•  a[I][j][k] = 7.0;
•  But actually equivalent to

•  p1 = a[I]
•  p2= p1[j]
•  p2[k] = 7.0

•  Advantage
•  The “columns” are allocated separately and need not be the same length

•  Disadvantages
•  Need multiple memory accesses per element access.
•  Need more memory to store all the pointers
•  Less regular access pattern
•  Messy to create/destroy

Records/structures
•  Collection of values (of varying types)

•  C structs
•  F90 user defined types

•  Good for representing multi-valued data or sparse/scattered
data.

•  Related variables are stored close together may help cache
use.
•  If a code section only uses a subset of the values cache use may

suffer.
•  Easy to add/re-order members without breaking code as

members are referenced by name not position.
•  much harder to remove them.

Structures and the compiler
• Programmer only specifies what a structure contains.
• Compiler chooses layout within the structure.
•  In C the compiler usually preserves the order of members

but inserts padding between members if needed to meet
alignment constraints
•  i.e. Doubles must be aligned on double-word boundaries.
•  Padding reduces cache-line utilisation so order members to reduce

padding.

• Similarly in Fortran but can use SEQUENCE keyword to
force deterministic layout.

Objects
• Usually implemented much the same as structures
• But objects are opaque

•  Language restricts access to the internal data.
•  Usually need to use special access functions.

• Much easier to change underlying data structure as this is
only visible to small fraction of the program

• Access functions introduce additional overhead
•  Function calls
•  Memory copies

• Really only a problem for small low-level objects
•  More on optimisation for objects later in the course.

Trees/lists
• Structures/Objects can contain pointers to other

structures.
•  Can construct trees and lists etc.

• Very flexible and can grow dynamically
•  Same problems as pointer arrays.

•  Additional memory accesses to navigate data
•  Additional storage to store pointers

•  Access pattern is very hard to predict.
•  Limited navigation

•  Can only follow access pattern supported by pointer structure
•  e.g. cannot jump to middle of a list without traversing half the

nodes.

High level data structures
• Many modern languages have built in-support for high

level data structures such as
•  Lists
•  Trees
•  Sets
•  Maps
•  Etc.

• May be available either as built-in data-types or as
standard libraries.
•  Have the same intrinsic advantages/disadvantages as home made

equivalents but typically better tested and optimised.

What can go wrong
• Poor cache/page use

•  Lack of spatial locality
•  Lack of temporal locality
•  cache thrashing

• Unnecessary memory accesses
•  pointer chasing
•  array temporaries

• Aliasing problems
•  Use of pointers can inhibit code optimisation

Reducing memory accesses
• Memory accesses are often the most important limiting

factor for code performance.
•  Many older codes were written when memory access was relatively

cheap.

•  Things to look for:
•  Unnecessary pointer chasing

•  pointer arrays that could be simple arrays
•  linked lists that could be arrays.

•  Unnecessary temporary arrays.
•  Tables of values that would be cheap to re-calculate.

Caches
• Caches rely on temporal and spatial locality
• Caches are divided into blocks
• Blocks are organized at sets
• A memory location in mapped to a set depending on its

address
•  It can occupy any block within that set

block "
offset

set"
index

tag

Word address

Utilizing caches
• Want to avoid cache conflicts

•  This happens when too much related data maps to the same cache
set.

•  Arrays or array dimensions proportional to (cache-size/set-size)
can cause this.

•  Rarely a problem with 8- and 16-way associative caches on XC30
•  Lots of accesses in a loop to arrays with power-of-2 dimensions

might still be bad
•  Can pad arrays to avoid this.

Utilizing caches II
• Want to use all of the data in a cache line

•  loading unwanted values is a waste of memory bandwidth.
•  structures are good for this
•  Or loop fastest over the corresponding index of an array.

• Place variables that are used together close together
•  Also have to worry about alignment with cache block boundaries.

• Avoid “gaps” in structures
•  In C structures may contain gaps to ensure the address of each

variable is aligned with its size.

CPU

Data

Instructions

Addresses

Register Cache RAM Virtual

Faster speed Larger size

page

line element No Virtual
Memory on
Cray XC30

Memory Hierarchy

CPU

L1 data or
instruction

Cache
KB

2 cycles

As you go further up the memory hierarchy, capacity and latency increase

Registers
1 KB

1 cycle

L2/L3 cache
MB

15 cycles

Memory
GB

300 cycles
Disk
TB

10M cycles

Cache Lines

CPU

registers cache

Typically more than one element at once is transferred

x = a[0]!

move a[0]...a[n]!
register = a[0]!

fast
slow

Bad Cache Alignment
CrayPAT profiling with export	 PAT_RT_HWPC=2 (L1 and L2 metrics)

Time% 0.2%
Time 0.000003
Calls 1
PAPI_L1_DCA 455.433M/sec 1367 ops
DC_L2_REFILL_MOESI 49.641M/sec 149 ops
DC_SYS_REFILL_MOESI 0.666M/sec 2 ops
BU_L2_REQ_DC 74.628M/sec 224 req
User time 0.000 secs 7804 cycles
Utilization rate 97.9%
L1 Data cache misses 50.308M/sec 151 misses
LD & ST per D1 miss 9.05 ops/miss
D1 cache hit ratio 89.0%
LD & ST per D2 miss 683.50 ops/miss
D2 cache hit ratio 99.1%
L2 cache hit ratio 98.7%
Memory to D1 refill 0.666M/sec 2 lines
Memory to D1 bandwidth 40.669MB/sec 128 bytes
L2 to Dcache bandwidth 3029.859MB/sec 9536 bytes

cf: 8

Good Cache Alignment
Time% 0.1%
Time 0.000002
Calls 1
PAPI_L1_DCA 689.986M/sec 1333 ops
DC_L2_REFILL_MOESI 33.645M/sec 65 ops
DC_SYS_REFILL_MOESI 0 ops
BU_L2_REQ_DC 34.163M/sec 66 req
User time 0.000 secs 5023 cycles
Utilization rate 95.1%
L1 Data cache misses 33.645M/sec 65 misses
LD & ST per D1 miss 20.51 ops/miss
D1 cache hit ratio 95.1%
LD & ST per D2 miss 1333.00 ops/miss
D2 cache hit ratio 100.0%
L2 cache hit ratio 100.0%
Memory to D1 refill 0 lines
Memory to D1 bandwidth 0 bytes
L2 to Dcache bandwidth 2053.542MB/sec 4160 bytes

Cache blocking

• A combination of:
•  strip mining (also called loop blocking, loop tiling...)
•  loop interchange

• Designed to increase data reuse:
•  temporal reuse: reuse array elements already referenced
•  spatial reuse: good use of cache lines

• Many ways to block any given loop nest
•  Which loops should be blocked?
•  What block size(s) will work best?

• Analysis can reveal which ways are beneficial
•  How big is your cache?

•  L1 is 32kB on Ivybridge.
•  How many cache lines can it hold?

•  each line typically 64B, so
•  How many cache lines are needed per loop iteration?
•  ...

• But trial-and-error is probably faster
•  or autotuning of the code

Loop tiling

30

for (i=0;i<n;i++){
 for (j=0;j<n;j++){
 a[i][j]+=b[i][j];
 }
}

for (ii=0;ii<n;ii+=B){
 for (jj=0;jj<n;jj+=B){
 for (i=ii;i<ii+B;i++){
 for (j=jj;j<jj+B;j++){
 a[i][j]+=b[i][j];
 }
 }
 }
}

j
i

j

i

Further cache optimisations

•  If multiple loop nests process a large array
•  First element of array will be out of cache when start second loop nest

•  Improving cache use
•  Consider fusing the loop nests

•  Completely: just have one loop nest
•  Partial: have one outer loop, containing multiple inner loops

•  Beware that too much fusion can result in lots of temporaries and cause
the compiler to run out of registers....

Original code Complete fusion Partial fusing
do	 j	 =	 1,	 Nj	
	 do	 i	 =	 1,	 Ni	
	 	 a(i,j)=b(i,j)*2	 	 	
	 enddo	
enddo	
	
do	 j	 =	 1,	 Nj	
	 do	 i	 =	 1,	 Ni	
	 	 a(i,j)=a(i,j)+1	 	 	
	 enddo	
enddo	

do	 j	 =	 1,	 Nj	
	 do	 i	 =	 1,	 Ni	
	 	 a(i,j)=b(i,j)*2	 	 	
	 	 a(i,j)=a(i,j)+1	 	 	
	 enddo	
enddo	

do	 j	 =	 1,	 Nj	
	 do	 i	 =	 1,	 Ni	
	 	 a(i,j)=b(i,j)*2	 	 	
	 enddo	
	 do	 i	 =	 1,	 Ni	
	 	 a(i,j)=a(i,j)+1	 	 	
	 enddo	
enddo	

Further cache optimisations
•  Perhaps cache block before fusing

•  Fuse one or more of the outer blocking loops
•  If multiple subprograms process the array

•  Remove one or more outer loops (or all loops) from subprograms
•  Haul loop into parent routine, pass in index values instead
•  Might want to ensure that compiler is inlining this routine
•  This technique is very useful if you want to use OpenMP/OpenACC

•  Beware of Fortran
•  array syntax often bad

•  a(:,:)=b(:,:)*2	
•  a(:,:)=a(:,:)+1	

•  compiler unlikely to fuse any loops

Original code
CALL	 sub1(a,b)	
CALL	 sub2(a)	
	
SUBROUTINE	 sub1(a)	
	 do	 j=1,Nj	
	 	 do	 i=1,Ni	
	 	 	 a(i,j)=b(i,j)*2	 	 	
	 	 enddo	
	 enddo	
END	 SUBROUTINE	 sub1	

After hauling
do	 j	 =	 1,	 Nj	
	 CALL	 sub1(a,b,j)	
	 CALL	 sub2(a,j)	
enddo	
	
SUBROUTINE	 sub1(a,j)	
	 do	 i=1,Ni	
	 	 a(i,j)=b(i,j)*2	 	 	
	 enddo	
END	 SUBROUTINE	 sub1	

Virtual Memory vs Physical Memory

•  Translation page table is stored in main memory
•  Each memory access logically takes twice as long – once to find the

physical address, once to get the actual data

• Use a hardware cache of least recently used addresses
•  Called a Translation Lookaside Buffer or TLB
•  You should aim to reuse this cache wherever possible

physical memory

bad for the TLB
non unit stride through the data

= new TLB entry created

= address already mapped

physical memory

VERY bad for the TLB
strides through the data which exceed the page size

VM page

Optimising for TLB

• Aim to reuse data on a page
•  i.e. treat similarly to a cache

• Standard-sized pages are 4kB
•  But you can use larger "huge" pages

•  128kB, 512kB, 2MB,... 64MB
•  Almost always benefit HPC applications

•  regular data accesses
•  huge pages give fewer TLB misses

•  Huge pages can also help communication performance

• To use huge pages (see man	 intro_hugepages)
•  Load chosen craype-‐hugepages*	 module

•  See module	 avail	 craype-‐hugepages for list of available
options

•  2M or 8M are usually most successful on Cray XC30

• Compile as before
• Make sure this module is also loaded in PBS jobscript

•  quick cheat: can load a different-sized hugepages module at
runtime
•  compile-time module enables hugepages, runtime one determines

actual size

Prefetch
• Some processors (including Ivy Bridge) prefetch

automatically
• Regular access patterns are recognized and cache lines

fetched in advance.
•  Usually only works for contiguous sequence of cache misses.

• Processor has a set of stream buffers
•  Each holds address of an active stream
•  Loads to the current block causes the next block to be prefetched

and the stream address to be updated.
•  Streams are established by series of cache misses to consecutive

locations

Using streams
•  To utilize stream hardware use linear access patterns

where possible
•  Only the order of cache block accesses needs to be linear, not

each word access.

• Most loops will require multiple streams
•  If the loop requires more streams than are supported in hardware

no prefetching will take place for some of the loads.
•  Consider splitting the loop.

• Prefetching typically cannot cross OS page boundaries
•  huge pages may help

Pointer aliasing
• Pointers are variables containing memory addresses.

•  Pointers are useful but can seriously inhibit code performance.

• Compilers try very hard to reduce memory accesses.
•  Only loading data from memory once.
•  Keep variables in registers and only update memory copy when

necessary.

• Pointers could point anywhere, so to be safe compiler will:
•  Reload all values after write through pointer
•  Synchronize all variables with memory before read through pointer

Pointers and Fortran
•  F77 had no pointers
• Arguments passed by reference (address)

•  Subroutine arguments are effectively pointers
•  But it is illegal Fortran if two arguments overlap

•  F90/F95 has restricted pointers
•  Pointers can only point at variables declared as a “target” or at the

target of another pointer
•  Compiler therefore knows more about possible aliasing problems

•  Try to avoid F90 pointers for performance critical data
structures.

Pointers and C
•  In C pointers are unrestricted

•  Can therefore seriously inhibit performance
•  Almost impossible to do without pointers

•  malloc requires the use of pointers.
•  Pointers used for call by reference. Alternative is call by value where all

data is copied!
•  Use the C99 restrict keyword where possible
•  ...or else use compiler flags

•  CCE: -h restrict
•  Intel: -fnoalias
•  GNU: ??

•  Explicit use of scalar temporaries may also reduce the problem

