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Sources of overhead 
•  There are 6 main causes of poor performance in threaded programs: 

•  sequential code  
•  communication 
•  load imbalance 
•  synchronisation 
•  hardware resource contention 
•  compiler (non-)optimisation 

•  We will take a look at each and discuss ways to address them  
•  Consider the special case of MPI + threads 



Sequential code 
•  Amount of sequential code will limit performance (Amdahl’s Law)  

•  Need to find ways of parallelising it! 

•  In OpenMP, all code outside parallel regions, and inside MASTER, 
SINGLE and CRITICAL directives is sequential - this code should be 
as as small as possible.  



Communication 
•  On shared memory machines, communication is “disguised” as 

increased memory access costs - it takes longer to access data in 
main memory or another processors cache than it does from local 
cache.  

•  Memory accesses are expensive! (~300 cycles for a main memory 
access compared to 1-3 cycles for a flop).  

•  Communication between processors takes place via the cache 
coherency mechanism.  

•  Unlike in message-passing, communication is spread throughout 
the program. This makes it much harder to analyse or monitor.  



Data affinity 
• Data will be cached on the processors which are accessing it, 

so we must reuse cached data as much as possible.  
•  Try to write code with good data affinity - ensure that the same 

thread accesses the same subset of program data as much as 
possible.  

• Also try to make these subsets large, contiguous chunks of 
data (avoids false sharing) 

• Note: MPI programs have good data affinity by default! 



Data affinity (cont) 
Example:  
!$OMP DO PRIVATE(I)     
     do j = 1,n  
         do i = 1,n   
            a(i,j) = i+j  
         end do  
      end do  
!$OMP DO SCHEDULE(STATIC,16) PRIVATE(I)  
      do j = 1,n   
         do i = 1,j  
            b(j) = b(j) + a(i,j) 
         end do 
      end do  

Different access patterns 
for a will result in 
additional cache misses  



Data affinity (cont) 
Example:  
 
!$OMP PARALLEL DO 
         do i = 1,n   
            ... = a(i)  
         end do  
 
         a(:) = 26.0  
 
!$OMP PARALLEL DO 
         do i = 1,n   
            ... = a(i)  
         end do  
 

a will be spread across 
multiple caches 

Sequential code!  
 a will be gathered into 
one cache 

a will be spread across 
multiple caches again  



Data affinity (cont.)  

• Sequential code will take longer with multiple threads than it 
does on one thread, due to the cache invalidations 

• Second parallel region will scale badly due to additional cache 
misses 

• May need to parallelise code which does not appear to take 
much time in the sequential program.  



Data affinity: NUMA effects 
• On distributed shared memory (cc-NUMA) systems, the 

location of data in main memory is important. 
•  Note: all current multi-socket x86 systems are cc-NUMA! 

• Default policy for the OS is to place data on the processor 
which first accesses it (first touch policy). 

•  For OpenMP programs this can be the worst possible option 
•  data is initialised in the master thread, so it is all allocated one node 
•  having all threads accessing data on the same node become a 

bottleneck 



•  In some OSs, there are options to control data placement 
•  e.g. in Linux, can use numactl change policy to round-robin   

•  First touch policy can be used to control data placement 
indirectly by parallelising data initialisation 
•  even though this may not seem worthwhile in view of the insignificant 

time it takes in the sequential code 
• Don’t have to get the distribution exactly right 

•  some distribution is usually much better than none at all.  
• Remember that the allocation is done on an OS page basis  

•  typically 4KB to 16KB 
•  beware of using huge pages!  



False sharing 
•  Worst cases occur where different threads repeated write neighbouring 

array elements 
•  Watch out for small chunk sizes in unbalanced loops  e.g.: 
 
!$OMP DO SCHEDULE(STATIC,1) 
      do j = 1,n  
         do i = 1,j  
            b(j) = b(j) + a(i,j) 
         end do  
      end do  
  
may induce false sharing on b. 
  



Load imbalance 
•  Note that load imbalance can arise from imbalances in communication as 

well as in computation.  

•  Experiment with different loop scheduling options - use 
SCHEDULE(RUNTIME). 

•  If none of these are appropriate, don’t be afraid to use a parallel region and 
do your own scheduling (it’s not that hard!). e.g. an irregular block 
schedule might be best for some triangular loop nests.  

•  For more irregular computations, using tasks can be helpful 
•  runtime takes care of the load balancing  



Synchronisation 
• Barriers can be very expensive (typically 1000s to 10000s of 

clock cycles). 
• Careful use of NOWAIT clauses. 
• Parallelise at the outermost level possible.  

•  May require reordering of loops and/or array indices. 

• Choice of CRITICAL / ATOMIC / lock routines  may have 
performance impact. 

  



Hardware resource contention 
•  The design of shared memory hardware is often a cost vs. 

performance trade-off. 
•  There are shared resources which, if all cores try to access 

them at the same time, do not scale 
•  or, put another way, an application running on a single code can access 

more than its fair share of the resources 

•  In particular, threads can contend for: 
•  memory bandwidth  
•  cache capacity  
•  functional units (if using SMT) 



Memory bandwidth 
• Codes which are very bandwidth-hungry will not scale linearly 

of most shared-memory hardware 
•  Try to reduce bandwidth demands by improving locality, and 

hence the re-use of data in caches 
•  will benefit the sequential performance as well.  



Cache space contention 
• On systems where cores share some level of cache, codes 

may not appear to scale well because a single core can 
access the whole of the shared cache. 

• Beware of tuning block sizes for a single thread, and then 
running multithreaded code 
•  each thread will try to utilise the whole cache 



SMT  
• When using SMT, threads running on the same core contend 

for functional units as well as cache space and memory 
bandwidth.  

• SMT tends to benefit codes where threads are idle because 
they are waiting on memory references 
•  code with non-contiguous/random memory access patterns 

• Codes which are bandwidth-hungry, or which saturate the 
floating point units (e.g. dense linear algebra) may not benefit 
from SMT 
•  might run slower 



SMT on ARCHER 
•  Ivy Bridge processors supports 1 or 2 SMT threads 

(hyperthreads) per core 
• Default is to use 1 hyperthread per core 
• Can enable 2 hyperthreads per core with aprun –j 2  
• Run 48 processes/threads per node 
• Need to take some care with thread placement 
• Benefits often do not outweigh the overheads of doubling 

the number of MPI processes, or threads 
•  especially if you are already running close to the limit of scalability  



Compiler (non-)optimisation 

• Sometimes the addition of parallel directives can inhibit 
the compiler from performing  sequential optimisations.  

• Symptoms: 1-thread parallel code has longer execution 
time and higher instruction count than sequential code.  

• Can sometimes be cured by making shared data private, 
or local to a routine.  



Hybrid MPI + threads 
• Many applications use hybrid parallelism for improved 

scalability and/or reducing memory usage.  

• Usually MPI + OpenMP, sometimes MPI + Posix threads 

•  Introduces its own set of single node optimisation 
problems 



Styles of mixed-mode programming 
•  Master-only 

•  all MPI communication takes place in the sequential part of the OpenMP 
program (no MPI in parallel regions) 

•  Funneled  
•  all MPI communication takes place through the same (master) thread 
•  can be inside parallel regions 

•  Serialized 
•  only one thread makes MPI calls at any one time 
•  distinguish sending/receiving threads via MPI tags or communicators 
•  be very careful about race conditions on send/recv buffers etc. 

•  Multiple 
•  MPI communication simultaneously in more than one thread 
•  some MPI implementations don’t support this 
•  …and those which do mostly don’t perform well 



OpenMP Master-only 
!$OMP parallel 
 work… 

!$OMP end parallel 
 

call MPI_Send(…) 

 
!$OMP parallel 

 work… 
!$OMP end parallel 

#pragma omp parallel 

{ 

   work… 

} 

ierror=MPI_Send(…); 

#pragma omp parallel 

{ 

   work…  

} 



OpenMP Funneled 
!$OMP parallel 

… work 
!$OMP barrier 

!$OMP master 

  call MPI_Send(…) 

!$OMP end master 

!$OMP barrier 
.. work 

!$OMP end parallel 

#pragma omp parallel 

{ 

 … work 

  #pragma omp barrier 

  #pragma omp master 

  {   

    ierror=MPI_Send(…); 

  } 

 #pragma omp barrier 

 … work 

} 



OpenMP Serialized 
!$OMP parallel 
… work 

!$OMP critical 
  call MPI_Send(…) 

!$OMP end critical 

… work 
!$OMP end parallel 

#pragma omp parallel 

{ 

 … work 

  #pragma omp critical 

  {   

    ierror=MPI_Send(…); 

  } 

 … work 

} 



OpenMP Multiple 
!$OMP parallel 
… work 

call MPI_Send(…) 
… work 

!$OMP end parallel 

#pragma omp parallel 

{ 

 … work  

  ierror=MPI_Send(…); 

 … work 

} 



Pitfalls 

•  The OpenMP implementation may introduce additional 
overheads not present in the MPI code (e.g. synchronisation, 
false sharing, sequential sections). 

•  The mixed implementation may require more synchronisation 
than a pure OpenMP version, if non-thread-safety of MPI is 
assumed. 

•  Implicit point-to-point synchronisation may be replaced by 
(more expensive) barriers.  



•  In the pure MPI code, the intra-node messages 
will often be naturally overlapped with inter-node 
messages 
•  harder to overlap inter-thread communication with inter-node 

messages. 

• NUMA effects can limit the scalability of OpenMP: 
it may be advantageous to run one MPI process 
per NUMA domain, rather than one MPI process 
per node. 
•  process placement becomes very important  
•  On ARCHER each socket (12 cores) is a NUMA domain 



Master-only 
• Advantages 

•  simple to write and maintain  
•  clear separation between outer (MPI) and inner 

(OpenMP) levels of parallelism 
•  no concerns about synchronising threads before/after 

sending messages 



Master-only 
• Disadvantages 

•  threads other than the master are idle during MPI calls 
(sequential code at the threading level) 

•  all communicated data passes through the cache where 
the master thread is executing.  

•  inter-process and inter-thread communication do not 
overlap. 

•  only way to synchronise threads before and after 
message transfers is by parallel regions which have a 
relatively high overhead. 

•  packing/unpacking of derived datatypes is sequential. 



Example 
 
      DO I=1,N 
         A(I) = B(I) + C(I) 
      END DO 
       
      CALL MPI_BSEND(A(N),1,.....) 
      CALL MPI_RECV(A(0),1,.....)  
 
 
      DO I = 1,N 
         D(I) = A(I-1) + A(I)  
      END DO  

!$omp parallel do 

!$omp parallel do 

Intra-node messages 
overlapped with inter-
node 

Inter-thread communication 
occurs here 

Implicit barrier added here 
* nthreads 

* nthreads 



Funneled 
• Advantages 

•  relatively simple to write and maintain  
•  cheaper ways to synchronise threads before and after message 

transfers 
•  possible for other threads to compute while master is in an MPI call 

• Disadvantages 
•  less clear separation between outer (MPI) and inner (OpenMP) levels of 

parallelism 
•  all communicated data still passes through the cache where the master 

thread is executing. 
•  inter-process and inter-thread communication still do not overlap. 



OpenMP Funneled with overlapping (1) 

Can’t using  
worksharing here! 



OpenMP Funneled with overlapping (2) 

Higher overheads and  
harder to synchronise  
between teams 



Serialised 
• Advantages 

•  easier for other threads to compute while one is in an MPI call 
•  can arrange for threads to communicate only their “own” data (i.e. the 

data they read and write).  

• Disadvantages 
•  getting harder to write/maintain 
•  more, smaller messages are sent, incurring additional latency 

overheads 
•  need to use tags or communicators to distinguish between messages 

from or to different threads in the same MPI process.   



Distinguishing between threads 
• By default, a call to MPI_Recv by any thread in an MPI 

process will match an incoming message from the sender.  
•  To distinguish between messages intended for different 

threads, we can use MPI tags 
•  if tags are already in use for other purposes, this gets messy 

• Alternatively, different threads can use different MPI 
communicators 
•  OK for simple patterns, e.g. where thread N in one process only ever 

communicates with thread N in other processes 
•  more complex patterns also get messy 



Multiple 
• Advantages 

•  Messages from different threads can (in theory) overlap  
•  many MPI implementations serialise them internally. 

•  Natural for threads to communicate only their “own” data 
•  Fewer concerns about synchronising threads (responsibility passed to 

the MPI library)  

• Disdavantages 
•  Hard to write/maintain 
•  Not all MPI implementations support this – loss of portability 
•  Most MPI implementations don’t perform well like this 

•  Thread safety implemented crudely using global locks. 


