
HDF5: An Introduction
Adam Carter
EPCC, The University of Edinburgh

What is HDF5?
Hierarchical Data Format (version 5)

From www.hdfgroup.org:

HDF5 is a unique technology suite that makes possible the

management of extremely large and complex data
collections.

What is HDF5?
•  A versatile data model that can represent very complex data

objects and a wide variety of metadata.
•  A completely portable file format with no limit on the number

or size of data objects in the collection.
•  A software library that runs on a range of computational

platforms, from laptops to massively parallel systems, and
implements a high-level API with C, C++, Fortran 90, and Java
interfaces.

•  A rich set of integrated performance features that allow for
access time and storage space optimizations.

•  Tools and applications for managing, manipulating, viewing,
and analyzing the data in the collection.

Source: www.hdf5group.org (emphasis mine)

Data Model
•  In very basic terms, HDF is like a directory and file

hierarchy in a file
•  The data model is based on groups and datasets

•  can think of groups like directories/folders, datasets like files
•  both can have (user-defined) attributes

Portable File Format
• HDF5 files are binary but portable

•  HDF5 model take care of types, endianness etc.

Why HDF5?
• Structure
• Portability

• Performance

•  Free & Open Source!

HDF5 files are Self-Describing

Tool Support

Pre-Optimised

Parallel-Ready

HDF5 Data Model and File Structure

Source: http://www.hdfgroup.org/HDF5/doc/UG/Images/Dmodel_fig1.JPG

HDF5 Groups
• HDF5 group: “a grouping structure containing instances of

zero or more groups or datasets, together with supporting
metadata.”

• A group has two parts:
•  A group header containing name & attributes
•  A group symbol table listing the group’s contents

•  Like UNIX directories, you can identify an object with a
path name:
•  / the root group
•  /foo a member of the root group, called foo
•  /foo/zoo a member of the foo group, called zoo

HDF5 Datasets
• A dataset has two parts:

•  A header
•  A data array

• Header provides information on:
•  Name

•  The dataset name. A sequence of alphanumeric characters.
•  Datatypes

•  Atomic, Compound, NATIVE, Named
•  Dataspace

•  Describes the dimensionality (including unlimited option)
•  Storage Layout

•  Contiguous, compact, chunked

Source: http://www.hdfgroup.org/

HDF5 Attributes
• Attributes are small named datasets that are attached to

primary datasets, groups, or named datatypes
• Name, value pairs

•  Value can have multiple entries of the same datatype
•  There’s a separate API for attribute read/write
• Excessively large attribute sets will impact performance

The HDF5 API
• H5F: File-level access routines

•  e.g. H5Fopen
• H5G: Group functions, for creating and operating on

groups of objects
•  e.g. H5Gset

• H5T: DataType functions, for creating and operating on
simple and compound datatypes to be used as the
elements in data arrays

• H5S: DataSpace functions, which create and manipulate
the dataspace in which the elements of a data array are
stored

• H5D: Dataset functions, which manipulate the data within
datasets and determine how the data is to be stored in the
file.

• H5P: Property list functions, for manipulating object
creation and access properties.

• H5A: Attribute access and manipulating routines.
• H5Z: Compression registration routine.
• H5E: Error handling routines.
• H5R: Reference routines.
• H5I: Identifier routine.

Include Files
(and a note about use on ARCHER)
•  In your program you’ll need:

#include <hdf5.h>

• On ARCHER you should

module load cray-hdf5-parallel

Example: Create and Close a File
	
	
hid_t	 	 	 	 	 	 	 file;	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 /*	 identifier	 */	
/*	
*	 Create	 a	 new	 file	 using	 H5ACC_TRUNC	 access,	
*	 default	 file	 creation	 properties,	 and	 default	 file	
*	 access	 properties.	
*	 Then	 close	 the	 file.	
*/	
file	 =	 H5Fcreate(FILE,	 H5ACC_TRUNC,	 H5P_DEFAULT,	 H5P_DEFAULT);	
status	 =	 H5Fclose(file);	

Allows an existing file (if present) to be
overwritten

A type defined in HDF5. An HDF ID, used to keep
track of objects like files

Example: Creating a dataset so that data
can be written to it
hid_t	 	 	 	 dataset,	 datatype,	 dataspace;	 	 	 /*	 declare	 identifiers	 */	
/*	 Create	 dataspace:	 Describe	 the	 size	 of	 the	 array	 and	 	
	 *	 create	 the	 data	 space	 for	 fixed	 size	 dataset.	 	
	 */	
dimsf[0]	 =	 NX;	
dimsf[1]	 =	 NY;	
dataspace	 =	 H5Screate_simple(RANK,	 dimsf,	 NULL);	 	
/*	 Define	 datatype	 for	 the	 data	 in	 the	 file.	
	 *	 We	 will	 store	 little	 endian	 integer	 numbers.	
	 */	
datatype	 =	 H5Tcopy(H5T_NATIVE_INT);	
status	 =	 H5Tset_order(datatype,	 H5T_ORDER_LE);	
/*	 Create	 a	 new	 dataset	 within	 the	 file	 using	 defined	 	
	 *	 dataspace	 and	 datatype	 and	 default	 dataset	 creation	
	 *	 properties.	
*/	
dataset	 =	 H5Dcreate(file,	 DATASETNAME,	 datatype,	 dataspace,	 H5P_DEFAULT);	

Example: Write data to a file
/*	
*	 Write	 the	 data	 to	 the	 dataset	 using	 default	 transfer	
*	 properties.	
*/	
status	 =	 H5Dwrite(dataset,	 H5T_NATIVE_INT,	 H5S_ALL,	 	

	 H5S_ALL,	 H5P_DEFAULT,	 data);	

Here’s the data itself, stored as a
standard array of ints in C.

Example: Read data from a file
/*	
*	 Write	 the	 data	 to	 the	 dataset	 using	 default	 transfer	
*	 properties.	
*/	
status	 =	 H5Dread(dataset,	 H5T_NATIVE_INT,	 H5S_ALL,	 	

	 H5S_ALL,	 H5P_DEFAULT,	 data);	
	

• Exactly analogous to write!

Hyperslabs

• Hyperslabs are
portions of datasets

start = (0,1)
stride = (4,3)
count = (2,4)
block = (3,2)

Parallel HDF5
• Designed to work with MPI and MPI-IO
• Parallel HDF5 files are compatible with serial HDF5 files

and sharable between different serial and parallel
platforms

• Parallel HDF5 had to be designed to have a single file
image to all processes, rather than having one file per
process. Having one file per process can cause expensive
post processing, and the files are not usable by different
processes.

• A standard parallel I/O interface had to be portable to
different platforms.

Source: http://www.hdfgroup.org/HDF5/Tutor/poverview.html

Further Reading
•  Introduction to HDF5

•  www.hdfgroup.org/HDF5/doc/H5.intro.html

• HDF5 User Guide
•  www.hdfgroup.org/HDF5/doc/UG/index.html

• HDF5 Reference Manual
•  www.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html

•  Introduction to Scientific I/O
•  http://www.nersc.gov/users/training/online-tutorials/introduction-to-

scientific-i-o/

Acknowledgements & Re Use
•  The presentation was created by Adam Carter, EPCC, The

University of Edinburgh
© 2015 The University of Edinburgh
You are welcome to reuse this presentation (or parts thereof) under the
terms of CC-BY-NC-SA

•  Portions of this presentation are based on the HDF5
documentation

© 2006-2014 The HDF Group
© 1998-2006 The Board of Trustees of the University of Illinois
Used as permitted by the license, which also allows reuse of this
presentation.
Details at http://www.hdfgroup.org/HDF5/doc/Copyright.html.

