
Data Management
File-systems on ARCHER

Introduction
• Archer like many HPC systems has a complex structure
• Multiple types of file system

•  Home
•  Work
•  Archive

• Multiple node types
•  Login
•  Compute
•  Serial batch/post-processing
•  Data transfer

Home
•  Four file-systems unified view as /home

•  /home1
•  /home2
•  /home3
•  /home4

• Approx 60TB each
• Standard Network-Attached-Storage (NAS)
• Backup supported
• Compilation and interactive tools

•  Not intended for high-performance or large data-sets.

Directories in /home
• Every project has an allocation on one home file-system
• Your home directory will live here

•  /home/<project>/<group>/<username>

Work
•  Three file systems, unified view as /work

•  /fs2 1.5 PB
•  /fs3 1.5 PB
•  /fs4 1.8 PB

• High performance parallel file-system build using lustre
• Main working disks for parallel jobs

•  Only file-systems available on the compute nodes so binaries and
data files should live here

Directories in /work
• Every project has a directory-tree in one of the /work file-

systems
•  /work/<project>/<group>/<username>

• Projects can create different groups to manage space
allocation if they want.

•  If you need to share data within a group use
•  /work/<project>/<group>/shared

•  If you want data to be readable outside the project use
•  /work/<project>/shared

Quotas
• Allocations are set using group quotas.
• Group quota limits total amount of space taken by files

with a particular group-id.
•  Each file can only be in one group.

• Default group for files.
•  Follows group of directory if “s” flag set on directory.
•  Otherwise effective group of user.

•  The default group permissions are set so that group-id
should default correct branch of the directory tree.
•  Unless changes using chgrp, rsync tar etc.

Archive (The RDF)
•  Three distinct file-systems

•  /epsrc 1.1 PB epsrc projects
•  /nerc 3.9 PB nerc projects
•  /general 235TB others

•  Parallel file-systems built using gpfs
•  Independent of ARCHER (part of the Research Data Facility)

•  General storage infrastructure. File-systems can grown.
•  Tape Backup to second site.
•  Primarily intended as a safe-haven for important data.

•  Though performance is not bad either
•  Similar directory structure to /work

•  Allocation by file-set

Mount locations
home work archive

login þ þ

þ

compute ý þ

ý

Serial batch/pp þ

þ

þ

Data transfer ý

ý

þ

Parallel File systems
• All these file-systems are built out of similar disk

technology.
•  Lustre and GPFS support larger and more performant file-

systems by using parallelism
•  Large numbers of disks in parallel.
•  Hosted by multiple file-servers.
•  Serving multiple clients

• Max performance is roughly proportional to capacity.

Overview

High performance IO
• Key to good performance is to use the hardware in

parallel
•  Large single files will be striped across multiple disks/

servers
•  Need to use large block transfers otherwise you will only be hitting

one disk at a time.
•  Single stream performance will still be limited by cpu, memory and

network bottlenecks for the single client compute node.
•  Much better to have multiple compute nodes perform IO at the

same time.

Meta-data
• Meta-data operations are much less parallel than data

transfers
•  File open/close
•  Directory listing
•  Query file-size/ownership/modify-date etc.

•  This can be a serious problem when large numbers of
compute nodes keep performing meta-data operation.

Metadata good practice
•  Don’t check for existence before opening

•  Open will return error if file does not exist.
•  Keep files open rather than close/reopen
•  Consider routing IO through a sub-set of nodes.
•  Very large numbers of small files will be slow to process later so

use parallel IO rather than separate files for each MPI rank.
•  File length check very expensive on lustre

•  Needs to query each parallel server
•  Have independent clients operate in different directories

•  Less lock contention.
•  Better meta-data caching.

File system contention
• Remember file-systems are a shared resource.
• Performance will depend on what other users are doing at

the same time.
•  This is particularly true of meta-data operations.
• Reducing contention increases performance and reduces

timing variability.

Moving data around
• Standard unix tools can be used to move data around

•  cp
•  rsync
•  dd
•  cpio

• Can be run interactively on login nodes for short simple
cases but often better to submit a serial batch job.

• Don’t perform data movement as part of a parallel batch
job as you are still being charged for the parallel nodes
while the copy takes place.

Chaining batch jobs
•  If may want to use serial batch jobs to perform pre/post

processing for a parallel job. Several options:
1.  Submit follow-on jobs from the batch script

•  Simple but follow-on job starts at the bottom of the queue.
•  Probably ok if second job is serial

2.  Use job dependencies:
$ qsub first.pbs
12345.sdb
$ qsub –W depend=afterok:12345.sdb second.pbs

Increasing parallelism
• May be some advantage to breaking up large data

movements into multiple batch jobs.
• Copy different directories in parallel using different serial

jobs.
• Or run multiple background copies from one script

 cp –r directory1 dest &
 cp –r directory2 dest &
 wait

•  Jobs will contend with each other but might still complete
quicker.
•  Best if clients are working on different directories

Impact of metadata operations
•  File metadata operations and lack of parallelism can make

large numbers of small files particularly expensive to
manipulate.

•  If you generate data like this consider packing related data into
larger archive files.

•  Compare copying 200000 1KB sized files with a single large file
on lustre. Note timings very variable due to contention.

 dd bs=500k cp -r rsync -a
200000 x 1K files NA 10m 14s 1h 55m 9s
1 x 200000K file 0.46 s 0.34 s 1.08s

rsync
• Popular and powerful data movement tool.

•  Can synchronize directories
•  Can be set to only move missing/changed files
•  Supports data transfers between hosts

• Unfortunately this adds some overhead and requires
more meta-data operations so rsync can be slower than a
simple copy.

Lustre tuning
•  Lustre provides lfs command to control/query file-system

behaviour:
spb@eslogin008:/work/z01/z01/spb> lfs getstripe bigdata
bigdata
lmm_stripe_count: 4
lmm_stripe_size: 1048576
lmm_layout_gen: 0
lmm_stripe_offset: 33
 obdidx objid objid group
 33 39337975 0x2583ff7 0
 25 39349614 0x2586d6e 0
 17 39605440 0x25c54c0 0
 1 39611128 0x25c6af8 0

Striping
• Data is striped across Object Storage Targets (OST)s
• Default is to stripe each file across 4 OSTs

•  Blocksize approx 1MB
•  Reasonable default for single stream access.

• Default striping can be changed using lfs setstripe before
creating file

• Worth increasing for large files read/written in parallel.
• A lfs cp command supports optimised copy

•  Only for copies within lustre though.
•  Does not seem to help with metadata problems.

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

