
Data Management 
File-systems on ARCHER 



Introduction 
• Archer like many HPC systems has a complex structure 
• Multiple types of file system 

•  Home 
•  Work 
•  Archive 

• Multiple node types 
•  Login 
•  Compute 
•  Serial batch/post-processing 
•  Data transfer 



Home 
•  Four file-systems unified view as /home 

•  /home1 
•  /home2 
•  /home3 
•  /home4 

• Approx 60TB each 
• Standard Network-Attached-Storage (NAS)  
• Backup supported 
• Compilation and interactive tools 

•  Not intended for high-performance or large data-sets. 



Directories in /home 
• Every project has an allocation on one home file-system 
• Your home directory will live here 

•  /home/<project>/<group>/<username> 



Work 
•  Three file systems, unified view as /work  

•  /fs2 1.5 PB 
•  /fs3 1.5 PB 
•  /fs4 1.8 PB 

• High performance parallel file-system build using lustre 
• Main working disks for parallel jobs 

•  Only file-systems available on the compute nodes so binaries and 
data files should live here 



Directories in /work 
• Every project has a directory-tree in one of the /work file-

systems 
•  /work/<project>/<group>/<username> 

• Projects can create different groups to manage space 
allocation if they want. 

•  If you need to share data within a group use 
•  /work/<project>/<group>/shared 

•  If you want data to be readable outside the project use 
•  /work/<project>/shared 



Quotas 
• Allocations are set using group quotas. 
• Group quota limits total amount of space taken by files 

with a particular group-id. 
•  Each file can only be in one group. 

• Default group for files. 
•  Follows group of directory if “s” flag set on directory. 
•  Otherwise effective group of user. 

•  The default group permissions are set so that group-id 
should default correct branch of the directory tree. 
•  Unless changes using chgrp, rsync tar etc. 



Archive (The RDF) 
•  Three distinct file-systems 

•  /epsrc 1.1 PB   epsrc projects 
•  /nerc   3.9 PB   nerc projects 
•  /general 235TB others 

•  Parallel file-systems built using gpfs 
•  Independent of ARCHER (part of the Research Data Facility) 

•  General storage infrastructure. File-systems can grown. 
•  Tape Backup to second site. 
•  Primarily intended as a safe-haven for important data. 

•  Though performance is not bad either 
•  Similar directory structure to /work 

•  Allocation by file-set 



Mount locations 
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Parallel File systems 
• All these file-systems are built out of similar disk 

technology. 
•  Lustre and GPFS support larger and more performant file-

systems by using parallelism 
•  Large numbers of disks in parallel. 
•  Hosted by multiple file-servers. 
•  Serving multiple clients 

• Max performance is roughly proportional to capacity.  



Overview 



High performance IO 
• Key to good performance is to use the hardware in 

parallel 
•  Large single files will be striped across multiple disks/

servers 
•  Need to use large block transfers otherwise you will only be hitting 

one disk at a time. 
•  Single stream performance will still be limited by cpu, memory and 

network bottlenecks for the single client compute node. 
•  Much better to have multiple compute nodes perform IO at the 

same time. 



Meta-data 
• Meta-data operations are much less parallel than data 

transfers 
•  File open/close 
•  Directory listing 
•  Query file-size/ownership/modify-date etc. 

•  This can be a serious problem when large numbers of 
compute nodes keep performing meta-data operation. 



Metadata good practice 
•  Don’t check for existence before opening 

•  Open will return error if file does not exist. 
•  Keep files open rather than close/reopen 
•  Consider routing IO through a sub-set of nodes. 
•  Very large numbers of small files will be slow to process later so 

use parallel IO rather than separate files for each MPI rank. 
•  File length check very expensive on lustre 

•  Needs to query each parallel server 
•  Have independent clients operate in different directories 

•  Less lock contention. 
•  Better meta-data caching. 



File system contention 
• Remember file-systems are a shared resource. 
• Performance will depend on what other users are doing at 

the same time. 
•  This is particularly true of meta-data operations. 
• Reducing contention increases performance and reduces 

timing variability. 



Moving data around 
• Standard unix tools can be used to move data around 

•  cp  
•  rsync  
•  dd  
•  cpio  

• Can be run interactively on login nodes for short simple 
cases but often better to submit a serial batch job. 

• Don’t perform data movement as part of a parallel batch 
job as you are still being charged for the parallel nodes 
while the copy takes place. 



Chaining batch jobs 
•  If may want to use serial batch jobs to perform pre/post 

processing for a parallel job. Several options: 
1.  Submit follow-on jobs from the batch script 

•  Simple but follow-on job starts at the bottom of the queue. 
•  Probably ok if second job is serial 

2.  Use job dependencies: 
$ qsub first.pbs 
12345.sdb 
$ qsub –W depend=afterok:12345.sdb second.pbs 



Increasing parallelism 
• May be some advantage to breaking up large data 

movements into multiple batch jobs. 
• Copy different directories in parallel using different serial 

jobs. 
• Or run multiple background copies from one script 

  cp –r directory1 dest & 
  cp –r directory2 dest & 
  wait 

•  Jobs will contend with each other but might still complete 
quicker. 
•  Best if clients are working on different directories 



Impact of metadata operations 
•  File metadata operations and lack of parallelism can make 

large numbers of small files particularly expensive to 
manipulate. 

•  If you generate data like this consider packing related data into 
larger archive files. 

•  Compare copying 200000 1KB sized files with a single large file 
on lustre. Note timings very variable due to contention. 

  dd bs=500k cp -r rsync -a 
200000 x 1K files NA 10m 14s 1h 55m 9s 
1 x 200000K file 0.46 s 0.34 s 1.08s 



rsync 
• Popular and powerful data movement tool. 

•  Can synchronize directories 
•  Can be set to only move missing/changed files 
•  Supports data transfers between hosts 

• Unfortunately this adds some overhead and requires 
more meta-data operations so rsync can be slower than a 
simple copy.  



Lustre tuning 
•  Lustre provides lfs command to control/query file-system 

behaviour: 
spb@eslogin008:/work/z01/z01/spb> lfs getstripe bigdata 
bigdata 
lmm_stripe_count:   4 
lmm_stripe_size:    1048576 
lmm_layout_gen:     0 
lmm_stripe_offset:  33 
        obdidx           objid           objid           group 
            33        39337975      0x2583ff7                0 
            25        39349614      0x2586d6e                0 
            17        39605440      0x25c54c0                0 
             1        39611128      0x25c6af8                0 

 



Striping 
• Data is striped across Object Storage Targets (OST)s 
• Default is to stripe each file across 4 OSTs 

•  Blocksize approx 1MB 
•  Reasonable default for single stream access. 

• Default striping can be changed using lfs setstripe before 
creating file 

• Worth increasing for large files read/written in parallel. 
• A lfs cp command supports optimised copy  

•  Only for copies within lustre though. 
•  Does not seem to help with metadata problems. 



Reusing this material 

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. 
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