
Introduction to Fortran 95

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the material
under the following terms: You must give appropriate credit, provide a link to the license and

indicate if changes were made. If you adapt or build on the material you must distribute your work
under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission

before reusing these images.

Acknowledgements
• A C Marshall from the University of Liverpool (funded by

JISC/NTI) first presented this material. He acknowledged
Steve Morgan and Lawrie Schonfelder.

• Helen Talbot and Neil Hamilton-Smith from the University
of Edinburgh took the overheads from that course and
worked on them to produce the associated Student Guide.

• Subsequent revisions of the material have been made by
Kenton D’Mellow and Steve Thorn from the University of
Edinburgh (ARCHER and ECDF teams).

Learning Outcomes
• On completion of this course students should be able to:

•  Understand and develop modularised Fortran programs.
•  Compile and run Fortran programs on ARCHER.

ARCHER Guest Accounts
• Guest account is only for the duration of the course

•  You can log in after hours between course days

• You must agree to the ARCHER terms and conditions:
•  http://www.archer.ac.uk/about-archer/policies/tandc.php

Outline Timetable
•  Day 1

•  09:30 LECTURE: Fundamentals of Computer Programming
•  10:15 PRACTICAL: Hello world
•  10:30 LECTURE: Fundamentals of Fortran cont.
•  11:00 BREAK: Coffee
•  11:30 PRACTICAL: Formatting, simple input
•  12:30 BREAK: Lunch
•  13:30 LECTURE: Logical Operations and Control Constructs
•  14:30 PRACTICAL: Numeric manipulation
•  15:30 BREAK: Tea
•  16:00 LECTURE: Arrays
•  17:00 PRACTICAL: Arrays
•  17:30 CLOSE

Outline Timetable
• Day 2

•  09:30 PRACTICAL: Arrays (cont'd)
•  10:15 LECTURE: Procedures
•  11:15 BREAK: Coffee
•  11:45 PRACTICAL: Procedures
•  12:45 BREAK: Lunch
•  13:45 LECTURE: Modules and Derived Types
•  15:15 BREAK: Tea
•  15:45 PRACTICAL: Modules, Types, Portability
•  17:30 CLOSE

Introduction to Fortran 95

Fundamentals of Programming

•  A computer must be given a set of unambiguous
instructions (a program)

•  Programming languages have a precise syntax. They
can be:

•  high-level, like Fortran, C or Java
•  low-level, like assembler code

•  A compiler translates high-level to low-level

Fortran

•  Fortran comes from FORmula TRANslation
•  Defined by an international standard
•  Each update removes obsolescent features, corrects any

mistakes, adds a few new features.

Character Set

•  Alphanumeric:
•  a-z, A-Z, 0-9, underscore
•  lower case letters are equivalent to upper case letters

•  21 symbols, shown in the table on page 6

Tab

•  Tab character is not in the Fortran character set
•  Using a Tab generates a warning message from the

compiler

Intrinsic Data Types

•  Two intrinsic type classes:
•  Numeric, for numerical calculations

 integer
 real
 complex

•  Non-numeric, for text-processing and control
 character
 logical

Numeric Data Types

•  Integer: stored exactly, often in the range
 [-2147483648 , 2147483647]
•  Real: stored as exactly as possible in the form of

mantissa and exponent, eg 0.271828 x 101

•  The range of the exponent is typically in [-307,308]
•  Complex: an ordered pair of real values

Integer literal constants

• An entity with a fixed value within some range

 -333
 -1

 0
 2

 32767

Real literal constants
•  An entity with a fixed value within some range

 -333.0
 -1.0
 0.
 2.0
 32767.0
 3.2767E+04

Non-numeric Data Types

•  Character: for text-processing

•  Logical: truth values for control

Character literal constants

• An entity with a fixed value
 “a”
 “abc”

 “abc and def”
 “Isn’t”
 ‘Isn’’t’

Logical literal constants

• One of the two fixed values
 .TRUE.
 .FALSE.

Names

• Names may be assigned to programs, subprograms,
memory locations (variables), labels

• Naming convention – names:
•  must be unique within programs
•  must start with a letter
•  may use letters, digits, and underscore
•  may not be longer than 31 characters

Spaces

•  Spaces must not appear:
•  within keywords
•  within names

•  Spaces must appear:
•  between keywords
•  between keywords and names

Implicit Typing

• An undeclared variable has an implicit type:

•  If 1st letter of name is in the range I to N then it is of type INTEGER
•  Otherwise it is of type REAL

• This is a terrible idea! Always use:

 IMPLICIT NONE

 which requires every variable to be declared.

Variable and value

• The formal syntax of a declaration of a variable of a given
type is
 <type>[,attribute-list] :: &
 <variable-list>[=value]

INTEGER :: k = 4

REAL, PARAMETER :: pi = 3.14159

15/11/11

Numeric type declarations

INTEGER :: i, j

REAL :: p
COMPLEX :: cx

Non-numeric type declarations

LOGICAL :: l1

CHARACTER :: s
CHARACTER(LEN=12) :: st

Initial values

• Declaring a variable does not assign a value to it: until a
value has been assigned the variable is known as an
unassigned variable.

INTEGER :: i=1, j=2

REAL :: p=3.0

COMPLEX :: cx=(1.0,1.732)

Initial values

LOGICAL :: on=.TRUE., off=.FALSE.
CHARACTER :: s=‘a’
CHARACTER(LEN=12) :: st=‘abcdef’

• st will be padded to the right with 6 blanks

Initial values

• The only intrinsic functions which may be used in
initialisation expressions are:

• RESHAPE
• SELECTED_INT_KIND
• SELECTED_REAL_KIND
• KIND

Constant values

• The parameter attribute is used to set an unalterable value
in a variable:

REAL, PARAMETER :: pi = 3.141592

REAL, PARAMETER :: radius = 3.5
REAL :: circum = 2.0 * pi * radius

• The variable circum does not inherit the attribute
PARAMETER

Parameter attribute
• Scalar named constant of type character:

 CHARACTER(LEN=*),PARAMETER :: &
 son=‘bart’, dad=“Homer”

• This is equivalent to:

 CHARACTER(LEN=4), PARAMETER :: &
 son=‘bart’
 CHARACTER(LEN=5), PARAMETER :: &
 dad=“Homer”

Comments

• An exclamation mark makes the rest of the line a
comment:

! Assign value 1 to variable i

i = 1 ! i holds the value 1

! Character context differs:

st = “No comment!”

Continuation lines

• Continuation lines (max. 39) are marked with an
ampersand:
 CHARACTER(LEN=*), PARAMETER :: &
 son = ‘bart’

• Breaking character strings is possible (but recommended

only if necessary)

 CHARACTER(LEN=4) :: son = ‘ba&

 &rt’

Assignment

•  All elements of this should be of the same type class
(can mix numeric types)

•  Each type class has its own set of operators
k = k + 1; a = b - c

kinship = son//’ son of ‘//dad
truth = p1.and.p2

Numeric operators

** exponentiation: exponent a scalar

* multiplication / division

+ addition - subtraction

Shown in decreasing order of precedence. The leftmost of
two operators of the same precedence applied first.

Character operators

CHARACTER(LEN=6):: str1=“abcdef”

CHARACTER(LEN=3):: str2=“xyz”

str1(1:1) ! Substring “a”

str1//str2 ! Concatenation
 ! giving “abcdefxyz”

Operator precedence

•  Operators have the precedence shown in descending
order in the table on page 11

•  Parentheses () may be used
•  Operators of equal precedence are applied in left to right

sequence

Mixed type Numeric expressions
•  Calculations must be performed (internally) between

objects of the same type. This is not a restriction for the
programmer

•  Precedence of types is:
 COMPLEX

 REAL

 INTEGER
•  Result always of higher type

Mixed type assignment

<integer variable> = <real expression>

The <real expression> is evaluated, truncated,
assigned to an <integer variable>

<real variable> = <integer expression>

The <integer expression> is evaluated, promoted to
type real, assigned to a <real variable>

Integer division

• Any remainder is discarded:
 12/4 → 3
 12/5 → 2

 12/6 → 2
 12/7 → 1

WRITE statement

WRITE(*,*) <output_list>

•  Write the items of <output_list> to the default output

device using default formatting

WRITE(*,*) “k =“, k

READ statement

READ(*,*) <input_list>

•  Read the items of <input_list> from the default input
device using default formatting

READ(*,*) x, y

Writing a program

The main steps are:

1.  Specify the problem
2.  Analyse the steps to a solution
3.  Write Fortran code
4.  Compile the program and run tests

Format of Fortran code

•  The program source code is essentially free format with:

•  up to 132 characters per line
•  significant spaces
•  ! Comments
•  & continuation lines of a statement
•  ; separating statements on a line

Program structure

PROGRAM optional_name

! Specification part
! Execution part

END PROGRAM optional_name

Specification part

• Declare type and name of variables

 IMPLICIT NONE

 INTEGER :: i
 REAL :: p, q
 COMPLEX :: x

 CHARACTER :: c
 CHARACTER(LEN=12) :: cc

Execution part

WRITE(6,”(A)”) “text string”

READ(*,*) variable_name

Errors

•  Compile time
–  Mistyped variable name
–  Syntactic error in code

•  Run time
–  Numeric value falls outside valid range
–  Logical error takes execution to wrong part of program, maybe

using unassigned variables

Practical 1a

• Try questions 1 and 3 on page 22

•  ssh guestXX@login.archer.ac.uk

• http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

WRITE statement

WRITE(*,*) <output_list>

•  Write the items of <output_list> to the default output

device using default formatting

WRITE(*,*) “k =“, k

WRITE statement

• WRITE(unit=u,fmt=<format_specification>)
<output_list>

• Write the items of <output_list> to the device
identified as unit u using the <format_specification>

 WRITE(unit=6,fmt=“(A3,I4)”) &

 “k =”, k

WRITE statement

•  Each WRITE statement begins output on a new record

•  The WRITE statement can transfer any object of intrinsic
type to the standard output

•  Be aware of the reserved unit numbers: 0, 5, 6

 0 Standard Error (error output)

 6 Standard output (screen or redirect)

 5 Standard input (keyboard or redirect)

Narrow field width

INTEGER :: i = 12345, j = -12345

WRITE(unit=6,fmt=“(2I5)”) i, j

12345*****

READ statement

READ(*,*) <input_list>

•  Read the items of <input_list> from the default input
device using default formatting

READ(*,*) x, y

READ statement

READ(unit=u,fmt=<format_specification>)
<input_list>

•  Read the items of <input_list> from the device
identified as unit u using the
<format_specification>

READ(unit=5,fmt=“(I4,F5.1)”) i,r

Prompting for input

WRITE(*,“(a)”,ADVANCE=“no”) &

 “prompt text”

•  Note that here the format specification has optionally
been given as a character literal constant

File handling

• File name has to be linked to a unit number:
 OPEN(unit=u, file=file_name)

• For example:
 OPEN(unit=10, file=“result”)
 WRITE(unit=10,fmt=“(i4,f4.1)”)&

 i, r

File handling

• A file may be disconnected by reference to its unit
number:

 CLOSE(unit=u)

• For example:
 CLOSE(unit=10)

Formatting input and output

•  Conversion between computer code for storing items and
the characters on keyboard or screen

•  An edit descriptor is needed for each item to be
converted

Edit descriptor: integer

• Iw Integer value in a field w symbols wide,
 possibly including a negative sign

I5

• bbbb1
• -5600

Edit descriptor: floating point

• Fw.d Floating point number, field width w with
d digits after the decimal point

F7.2

• bbb1.00
• -273.18

• Decimal point is always present

Edit descriptor: exponential

• Ew.d Exponential form, field width w with d digits
after the decimal point

E9.2

• b0.10E+01
• -0.27E+03

Edit descriptor: logical

• Lw Logical value in field width w

• L1

• T

• L2

• bT

Edit descriptor: alphanumeric
• An Characters in field width n

“FOUR”
• A3 FOU
• A4 FOUR
• A5 FOURb bFOUR input

output

Edit descriptor: general
• Gw.d General edit descriptor

• For real or complex: Ew’.d’ or Fw’.d’

 where w’ = w - 4

• For integer: Iw

• For logical: Lw

• For character: Aw

Spaces and newlines

•  X denotes a single space
•  nX denotes n spaces
•  / denotes a newline
•  // denotes 2 newlines
•  n/ denotes n newlines

Format specification

•  This is a comma separated list of edit descriptors
contained in (parentheses)

•  There must be an edit descriptor for each item in the
input or output list
 (A4,F4.1,2X,A5,F4.1)

Repeat factors

•  For a single edit descriptor:
 (I2,I2,I2) → (3I2)

•  For a sequence of edit descriptors:
 (2X,A5,F4.1, 2X,A5,F4.1) → (2(2x,A5,F4.1))

Unequal counts

• Number of edit descriptors less than number of items in
the list:

(3I2) I,J,K,L

I, J, K 1st record
L 2nd record

Unequal counts

• Number of edit descriptors more than number of items in
the list:

(5I2) I,J,K,L

I, J, K, L 1 record only

Practical 1b

• Try the rest of the questions on page 22

•  ssh guestXX@tds1.archer.ac.uk

Relational operators

•  > greater than
•  >= greater than or equal
•  <= less than or equal
•  < less than
•  /= not equal to
•  == equal to
• Type logical result from numeric operands

Complex operands

•  If either or both operands being compared are complex
then the only operators allowed are:

 == and /=

Logical operators

•  .NOT. .true. if operand .false.
•  .AND. .true. if both operands .true.
•  .OR. .true. if at least one operand

 .true.
•  .EQV. .true. if both operands same
•  .NEQV. .true. if both operands different

IF statement

IF (<logical-expression>) &

 <executable-statement>

• Examples:

 IF (x > y) &

 a = 3
 b = 2

IF statement

• There is no shorthand for multiple tests on one variable

• Example: do J and K each hold the same value as I?
 IF (I == J .AND. I == K) ...

Real-valued comparisons

REAL :: a, b, tol=0.001

LOGICAL :: same
! Assign values to a and b

IF (ABS(a-b) < tol) same=.TRUE.

IF…THEN construct

IF (i == 0) THEN

! condition true
 WRITE(*,*) “I is zero”

! more statements could follow
END IF

IF…THEN…ELSE construct

IF (i == 0) THEN

! condition true
 WRITE(*,*) “I is zero”

ELSE
! condition false
 WRITE(*,*) “I is not zero”

END IF

IF…THEN…ELSE IF construct

IF (I > 17) THEN

 Write(*,*) “I > 17”
ELSE IF (I == 17) THEN

 Write(*,*) “I is 17”
ELSE
 Write(*,*) “I < 17”

END IF

Nested, Named IF constructs

outa: IF (a == 0) THEN

 Write(*,*) “a is 0”
 inna: IF (b > 0) THEN

 Write(*,*) “a is 0 and b > 0”
 END IF inna
END IF outa

Procedure calls

•  In the program on page 29 we have:
 SQRT(REAL(D))! D of type integer

•  REAL returns a type real value of its argument D
•  SQRT needs a type real argument to return its square root

SELECT CASE construct
SELECT CASE (i)
 CASE(2,3,5,7)
 Write(6,”A10)”) “i is prime”
 CASE(10:)
 Write(6,”(A10)”) “i >= 10”
 CASE DEFAULT
 Write(6,”(A22)”) &
 “I not prime and I < 10”
END SELECT

Select case components

•  The case expression must be scalar and of type
INTEGER, LOGICAL or CHARACTER

•  The case selector must be of the same type as the case
expression

Unbounded DO loop

i = 0

DO
 i = i + 1

 Write(6,”(A4,I4)”) “i is”, i
END DO

Conditional EXIT from loop

i = 0

DO
 i = i + 1

 IF (i > 100) EXIT
 Write(6,”(A4,I4)”) “i is”, i
END DO

! EXIT brings control to here

Conditional CYCLE in loop

i = 0

DO

 i = i + 1

 IF (i > 49 .AND. i < 60) CYCLE

 IF (i > 100) EXIT

 Write(6,”(A4,I4)”) “i is “, i

END DO ! CYCLE brings control to here

! EXIT brings control to here

Named, Nested loops

outa: DO

 inna: DO
 IF (a > b) EXIT outa

 IF (a == b) CYCLE outa
 IF (c > d) EXIT inna
 END DO inna

END DO outa

Indexed DO loops
DO i = 1, 100, 1
! i takes the values 1,2,3..100
END DO

•  Index variable i must be a named, scalar, integer variable
• i takes values from 1 to 100 in steps of 1
• i must not be explicitly modified in the loop
• Step is assumed to be 1 if omitted

Upper bound not met

DO I = 1, 30, 2

 ! I takes values 1, 3,…,27, 29
END DO

Index decremented

DO I = 30, 1, -2

 ! I takes values 30,28,…,4,2
END DO

Zero-trip loop

DO I = 30, 1, 2

 ! Zero iterations, loop skipped
END DO

Missing stride

DO I = 1, 30

 ! I takes values 1, 2,…, 29, 30
END DO

DO construct index

DO I = 1, n

 IF (I == k) EXIT
END DO

•  n < 1, zero trip, I given value 1
•  n > 1 and n >= k, I same value as k
•  n > 1 and n < k, I has value n+1

Practical 2

• Try the questions on page 36

•  You will need the two files: statsa and statsb

•  Download it from the ARCHER website, the course materials link from
the F95 course.

Integer :: buf, stat, total
open(unit=10,”bob.txt)
total = 0
do

 read(10, iostat=stat) buf
 if(stat /= 0) exit
 total = total + buf

end do

Arrays

•  An array is a collection of values of the same type
•  Particular elements in an array are identified by

subscripting

One-dimensional array

REAL, DIMENSION(1:15) :: X

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Two-dimensional array

REAL, DIMENSION(1:5,1:3) :: Y, Z

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

4,1 4,2 4,3

5,1 5,2 5,3

Two-dimensional array

REAL, DIMENSION(-4:0,0:2) :: B

-4,0 -4,1 -4,2

-3,0 -3,1 -3,2

-2,0 -2,1 -2,2

-1,0 -1,1 -1,2

0,0 0,1 0,2

Array terminology

•  Rank: number of dimensions, max 7
•  Bounds: lower and upper limits of indices

 (default lower bound is 1)
•  Extent: number of elements in a dimension
•  Size: total number of elements
•  Shape: ordered sequence of all extents
•  Conformable: arrays of the same shape

Array declarations

• Each named array needs a type and a dimension:

 REAL, DIMENSION(15) :: x

 REAL, DIMENSION(1:5,1:3) :: y,z
 INTEGER, PARAMETER :: lda=5
 LOGICAL, DIMENSION(1:lda) :: ld

Array element ordering

•  Fortran does not specify how arrays should be located in
memory

•  In certain situations element ordering is in column major
form, ie the first subscript changes fastest

Array element ordering

1 6 11

2 7 12

3 8 13

4 9 14

5 10 15

Array Sections

• Specified by subscript-triplets for each dimension:

• [<bound1>]:[<bound2>]:[<stride>]

• <bound1>, <bound2> and <stride>
• must each be scalar integer expressions

• Real, dimension(5,5,5) :: x,y
• Do i=1,5
•  do j=1,5

•  do k=1,5
•  X(k,j,i) = y(k,j,i) + 2.5

•  end do
 End do
End do

Array Sections

•  REAL, DIMENSION(1:15) :: A
•  A(:) whole array
•  A(m:) elements m to 15 inclusive
•  A(:n) elements 1 to n inclusive
•  A(m:n) elements m to n inclusive
•  A(::2) elements 1 to 15 in steps of 2
•  A(m:m) 1 element section of rank 1

Array Sections

• Given
• REAL, DIMENSION(1:6,1:8) :: P

• P(1:3,1:4) is a simple 3x4 sub-array

• P(1:6:2,1:8:2) takes elements from alternate rows
and alternate columns and is also a 3x4 sub-array

P(1:3,1:4)

P(1:6:2,1:8:2)

P(3,2:7) rank-one P(3:3,2:7) rank-two

Array conformance

•  Arrays or sub-arrays conform if they have the same
shape

•  Conforming arrays can be treated as a single variable in
an expression:
 c = d
 c = 1.0

Conformance

 C = D

 valid

Non-Conformance

 B = A

same size, different shape: invalid

1,1

5,3

1 15

Elements

A(1) = 0.0 ! set one element to zero
B(0,0) = A(3) + C(5,1)

 ! Set an element of B to

 ! the sum of two other elements

Whole array expressions

a = 0.0 ! scalar conforms to any shape
b = c + d ! b,c,d must be conformable

e = sin(f) + cos(g)! and so must e,f,g

WHERE statement

WHERE (<logical-array-expr>) &

 <array-variable> = <expr>

For example:
WHERE (P > 0.0) P = log(P)

WHERE construct
WHERE (<logical-array-expr>)

 <array-assignments>
END WHERE

For example:

WHERE (P > 0.0)

 X = X + log(P)
 Y = Y – 1.0/P

END WHERE

COUNT function

COUNT (<logical-array-expr>)

For example:

nonnegP = COUNT(P > 0.0)

SUM function

SUM(<array>)

For example:

sumP = SUM(P)

MOD function

MOD(A,N)

Returns the remainder of A modulo N

For example:

P = MOD(P,2)

replaces each element of P by the remainder when that
element is divided by 2

Program old_times (page 46)

•  Uses where, sum, count (and mod)
•  Takes array sections r1(1:n) and r2(1:n)

MINVAL function

MINVAL(<array>)

Returns the minimum value of an element of <array>
For example:

minP = MINVAL(P)

MAXVAL function

MAXVAL(<array>)

Returns the maximum value of an element of <array>
For example:

maxP = MAXVAL(P)

MINLOC function

MINLOC(<array>)

Returns a rank-one integer array of size equal to rank of
<array> with the subscripts of the element of <array>
with minimum value. MINLOC assumes the declared lower
bounds of <array> were 1

MINLOC function

REAL, DIMENSION(1:6,1:8) :: P

INTEGER, DIMENSION(1:2) :: PRC
! Assign values to P

PRC = MINLOC(P)
! PRC(1) returns row subscript
! PRC(2) returns column subscript

MAXLOC function

MAXLOC(<array>)

Returns a rank-one integer array of size equal to rank of
<array> with the subscripts of the element of <array>
with maximum value. MAXLOC assumes the declared lower
bounds of <array> were 1

MAXLOC function

REAL, DIMENSION(1:6,1:8) :: P

INTEGER, DIMENSION(1:2) :: PRC
! Assign values to P

PRC = MAXLOC(P)
! PRC(1) returns row subscript
! PRC(2) returns column subscript

Program seek_extremes (p48)

• Uses minval, maxval, minloc and maxloc on the
whole rank 2 array magi

Array input/output

•  Elements of an array of rank greater than 1 are stored in
column major form

•  For arrays of rank 2 the intrinsic function TRANSPOSE
changes rows and columns

TRANSPOSE function

1 4 7 1 2 3

2 5 8 4 5 6

3 6 9 7 8 9

Array constructors

Give arrays or array-sections specific values: arrays must
be rank 1 and conform

INTEGER :: i
INTEGER, DIMENSION(1:8) :: ints

ints=(/100,1,2,3,4,5,6,100/)
ints=(/100,(i, i=1,6), 100/)

RESHAPE intrinsic function

• Form is RESHAPE(<source>,<shape>)

INTEGER, DIMENSION(1:2,1:2) :: a

a=RESHAPE((/1,2,3,4/),(/2,2/))

1 3

2 4

Named Array Constants

INTEGER, DIMENSION(3), &

 PARAMETER :: Unit_vec = (/1,1,1/)

INTEGER, DIMENSION(3,3), &
 PARAMETER :: Unit_matrix = &
 RESHAPE((/1,0,0,0,1,0,0,0,1/),(/3,3/))

Allocatable array declaration

• Declare the array giving its type, rank, the attribute
allocatable, and name:

 REAL, DIMENSION(:,:,:), &
 ALLOCATABLE :: ages

Allocatable array allocation

•  Specify the bounds of the array and optionally check for
success

 ALLOCATE(ages(1:60,1:60,1:100), STAT=ierr)

•  If the integer variable ierr returns 0 then the array ages
has been allocated

Deallocating arrays

DEALLOCATE(speed, STAT=ierr)

IF (ALLOCATED(speed)) &
 DEALLOCATE(speed , STAT=ierr)

DOT_PRODUCT function

A1 B1

A2 B2

A3 ● B3 c
A4 B4

A5 B5

MATMUL function

x

multiplication operator

*

Practical 3

• Try the exercises on page 52

Program units

•  Fortran has two main program units:
•  The main program, which can contain procedures
•  A module, which can contain declarations and

procedures
•  Modules will be described in the next lecture

Procedures

•  There are two types of procedure:
•  function: a subprogram returning a result through the

function name
•  subroutine: a parameterised, named sub-program

performing a particular task

Procedures

•  Written for specific repeated tasks

•  Before writing your own, look at available collections
such as the:
•  Intrinsics
•  NAG Fortran Library
•  Linear algebra libraries (LAPACK, ScaLAPACK,etc…)
•  FFT libraries

Intrinsic procedures
•  Elemental

•  mathematical: SIN(x), LOG(x)
•  numeric: MAX(x1,x2), CEILING(x)
•  character: ADJUSTL(str1)

•  Inquiry
•  array: ALLOCATED(a), SIZE(a)
•  numeric: PRECISION(x), RANGE(x)

•  Transformational
•  array: RESHAPE(a1,a2), SUM(a)

•  Non-elemental
 DATE_AND_TIME, SYSTEM_CLOCK

Type conversion functions

•  REAL(i) converts the integer type value i to real type
•  INT(x) converts the real type value x to integer type (by

truncation)
•  NINT(x) returns the integer value nearest to the real

type value x (by rounding)

Main program syntax

[PROGRAM [<main program name>]]

<declaration of local objects>
<executable statements>

[CONTAINS
<internal procedure definitions>]
END [PROGRAM [<main program name>]]

Main program example
PROGRAM Main
 IMPLICIT NONE
 REAL :: x, y
 READ(*,*) x
 y = Negative(x)
CONTAINS
 ! Real function Negative coded here
END PROGRAM Main

Function syntax

[<prefix>] FUNCTION <proc-name> ([<dummy
args>])

<declaration of dummy args>
<declaration of local objects>

<executable statements, assigning result to
proc-name>

END [FUNCTION [<proc-name>]]

Function example
PROGRAM Main
 IMPLICIT NONE
 ! Specification part
 ! Execution part
CONTAINS
 REAL FUNCTION Negative(a)
 REAL :: a
 Negative = -a
 END FUNCTION Negative
END PROGRAM Main

Function example
PROGRAM Main
 IMPLICIT NONE
 ! Specification part
 ! Execution part
CONTAINS
 FUNCTION Negative(a)
 REAL :: a, Negative
 Negative = -a
 END FUNCTION Negative
END PROGRAM Main

Function facts

•  A value must be assigned to the function name within the
body of the function

•  Side-effects must be avoided. For example do not alter
the value of any argument, do not read or write values.
Use a subroutine if side-effects are unavoidable.

Subroutine syntax

SUBROUTINE <proc-name>[(<dummy args>)]

<declaration of dummy args>

<declaration of local objects>

<executable statements>

END [SUBROUTINE [<proc-name>]]

Subroutine example
PROGRAM Thingy
 IMPLICIT NONE
 ...
 CALL OutputFigures(NumberSet)
 ...
CONTAINS
 SUBROUTINE OutputFigures(Numbers)
 REAL,DIMENSION(:) :: Numbers
 Numbers(1) = 4.7
 END SUBROUTINE OutputFigures
END PROGRAM Thingy

Argument association

•  In the invocation
 CALL OutputFigures(NumberSet)

 and the declaration
 SUBROUTINE OutputFigures(Numbers)

 NumberSet is the actual argument which is argument
 associated with the dummy argument Numbers

• Arguments must agree in type

Dummy argument intent

•  INTENT(IN) can only be referenced - necessary if
 actual argument is a literal

•  INTENT(OUT) must be assigned to before use

•  INTENT(INOUT) can be referenced and assigned
to

Local objects

REAL FUNCTION Area(x,y,z)

REAL, INTENT(IN) :: x,y,z
REAL :: height, theta ! local object

theta = … ! Use x, y, z
height = … ! Use theta, x, y, z
Area = … ! Use height and y

END FUNCTION Area

Local objects

•  are created when procedure invoked
•  are destroyed when procedure completes
•  do not retain values between calls
•  Variables that are initialised on declaration do retain their

values

SAVE attribute

• Allows local objects to retain their values between
procedure invocations

 SUBROUTINE Barmy(arg1,arg2)

 REAL, INTENT(IN) :: arg1
 REAL, INTENT(OUT) :: arg2

 INTEGER, SAVE :: NumInvocs = 0
 NumInvocs = NumInvocs + 1
 ...

Scoping rules

•  The scope of an entity is the range of program units
where it is visible

•  Internal procedures can inherit entities by host
association

•  Objects declared in modules can be made visible by use
association

Host Association
PROGRAM CalculatePay
INTEGER :: NumberCalcsDone = 0

 call PrintPay(Pay,Tax)
 write(*,*) fred

CONTAINS
 SUBROUTINE PrintPay(Pay,Tax)
 REAL, INTENT(IN) :: Pay, Tax

 INTEGER :: fred
 NumberCalcsDone = ... !host assn
 END SUBROUTINE PrintPay
END PROGRAM CalculatePay

Use Association
MODULE Tally
 INTEGER :: NumberCalcsDone
END MODULE Tally
PROGRAM CalculatePay
 USE Tally
 REAL :: GrossPay, TaxRate, Delta

 ...
 NumberCalcsDone = ... !use assn
END PROGRAM CalculatePay

Scope of Names
PROGRAM Proggie
 REAL :: A, B, C
 CALL Sub(A)
CONTAINS
 SUBROUTINE Sub(D)
 REAL :: D; REAL :: C
 B=...; C=...; D=...
 END SUBROUTINE Sub
END PROGRAM Proggie

Dummy array arguments

•  Two types of dummy array argument:

•  Explicit shape – all the bounds are specified. The
actual argument must conform in size and shape.

•  Assumed shape – all the bounds are inherited from the
actual argument which must conform in rank

Explicit-shape

 REAL, DIMENSION(8,8), INTENT(IN) :: &

 expl_shape

• Actual argument must be of type real, have size 64 and
shape 8,8

•  In this subprogram the bounds are 1:8,1:8 whatever they
may be in the calling unit

Assumed-shape
 REAL, DIMENSION(:,:), INTENT(IN) :: &

 assum_shape

• Actual argument here must have rank 2

•  In the subprogram the lower bounds are 1 unless another
value is given, whatever they may be in the calling unit

 REAL, DIMENSION(0:,0:), &
 INTENT(IN) :: assum_shape

External function

• An external function is defined outside the body of the
program which uses it. The program needs to inform the
compiler of the type of this function and that it is external.

 REAL :: Negative
 EXTERNAL :: Negative

 REAL, EXTERNAL :: Negative

Practical 4

• Try the questions on page 67

Modules

• Constants and procedures can be encapsulated in
 modules for use in one or more programs

Points about modules

•  Within a module, functions and subroutines are known as
module procedures

•  Module procedures can contain internal procedures
•  Module objects can be given the SAVE attribute
•  Modules can be USEd by procedures and modules
•  Modules must be compiled before the program unit which

uses them.

Module syntax
MODULE module-name

[<declarations and specification statements>]

[CONTAINS

<module-procedures>]

END [MODULE [module-name]]

MODULE Triangle_Operations
 IMPLICIT NONE

 REAL, PARAMETER :: pi=3.14159

CONTAINS

 FUNCTION theta(x,y,z)

 ...
 END FUNCTION theta

 FUNCTION Area(x,y,z)

 ...
 END FUNCTION Area

END MODULE Triangle_operations

Module example

Using modules

PROGRAM TriangeUser

 USE Triangle_Operations, only: pi, Area
 IMPLICIT NONE

 REAL :: a, b, c, d
 d = Area(a,b,c)
 c = pi

Restricting visibility

• The visibility of an object declared in a module can be
restricted to that module by giving it the attribute PRIVATE

 REAL :: Area, theta

 PUBLIC !confirm default
 PRIVATE :: theta !restrict

 REAL, PRIVATE :: height !restrict

USE rename syntax

USE <module-name> &
 [,<new-name> => <use-name>]

Use Rename example

USE Triangle_Operations, &

 Space => Area

USE ONLY syntax

USE <module-name> [, ONLY : <only-list>]

Use Only example

USE Triangle_operations, ONLY: &

 pi, Space => Area

DERIVED types

TYPE COORDS_3D

 REAL :: x, y, z
END TYPE COORDS_3D

!
TYPE(COORDS_3D) :: pt1, pt2

Supertypes

TYPE SPHERE

 TYPE(COORDS_3D) :: centre
 REAL :: radius

END TYPE SPHERE
!
TYPE(SPHERE) :: bubble, ball

Components of an object

•  An individual component of a derived type object can be
 selected by using the % operator:

 pt1%x = 3.0
 ball%radius = 1.0
 ball%centre%x = 0.0

Whole object assignment

• Use the derived type name as a constructor:

 pt1 = COORDS_3D(3.0, 4.0, 5.0)

 ball = SPHERE(centre=pt1, radius=5.0)

Input or Output

• Components are accessed in defined order, for example:

 ball%centre%x

 ball%centre%y
 ball%centre%z
 ball%radius

True portability

•  The range and precision of numeric values are not
defined in the language but are dependent on the
computer system used

•  For integers, RANGE(i), and for reals RANGE(x) return
the range of values supported

•  For reals, PRECISION(x) returns the precision to which
values are held

•  -999999999<i<999999999

Properties of integers

•  Integer values are always stored exactly so it is only
necessary to define their range.

• The intrinsic function SELECTED_INT_KIND(<range>)
•  returns an integer KIND value which can be used to

declare integers of this kind.

Integers of chosen kind

INTEGER, PARAMETER :: &

 ik9 = SELECTED_INT_KIND(9)
INTEGER(KIND=ik9) :: I

INTEGER :: I
INTEGER(KIND=4) ::I
INTEGER(KIND=8) :: I

• ik9 is non-negative if the desired range of integer values,
-109 < n < 109 can be achieved

Properties of reals

SELECTED_REAL_KIND &

(<precision>,<range>)

•  returns an integer KIND value which can be used to
declare reals with the chosen properties

•  It returns -1 if the precision cannot be achieved, and -2 if
the range cannot be achieved

Reals of chosen kind

INTEGER, PARAMETER :: &

 rk637 = SELECTED_REAL_KIND(6,37)
REAL(KIND=rk637) :: x

Constants and KIND

INTEGER(KIND=ik9) :: I = 7_ik9

REAL(KIND=rk637) :: x = 5.0_rk637

Practical 5

• Try the questions on page 77

Bibliography
Fortran95/2003 explained
Michael Metcalf, John Reid, Malcolm Cohen.
Oxford University Press
ISBN 0 19 852693 8

Fortran 90 Programming
T.M.R.Ellis, Ivor R.Philips, Thomas M.Lahey
Addison-Wesley
ISBN 0-201-54446-6

Fortran 90/95 for Scientists and Engineers
Stephen J.Chapman
McGraw Hill
ISBN 007-123233-8

