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1. Fundamentals of Computer Programming 

Telling a Computer What To Do 
To get a computer to perform a specific task it must be given a sequence of 
unambiguous instructions or a program. 
An everyday example is instructions on how to assemble a bedside cabinet.  The 
instructions must be followed precisely and in the correct order: 
 
 insert the spigot into hole `A'; 
 apply glue along the edge of side panel; 
 press together side and top panels; 
 attach toggle pin `B' to grommet `C'; 
 ... and so on. 
 
The cabinet would turn out wonky if the instructions were not followed to the letter! 

Programming Languages 
Programming languages must be: 
 
 totally unambiguous (unlike natural languages, for example, English); 
 simple to use. 
 
All programming languages have a very precise syntax (or grammar).  This ensures 
that all syntactically correct programs have a single meaning. 
 
High-level programming languages include Fortran 90, Fortran 95, C and Java.  On 
the other hand assembler code is a Low-Level Language.  Generally: 
 
 a program is a series of instructions to the CPU of the computer; 
 all programs could be written in assembler code but this is a slow, complex and 

error-prone process; 
 high-level languages are more expressive, more secure and quicker to use; 
 a high-level program is compiled (translated) into assembler code by a compiler. 

Fortran Evolution 
Fortran stands for FORmula TRANslation.  The first compiler appeared in 1957 and 
the first official standard in 1972 which was given the name of `Fortran 66'.  This was 
updated in 1980 to Fortran 77, updated in 1991 to Fortran 90, updated in 1997 to 
Fortran 95, and further updated in 2004 to Fortran 2003, and in 2010 to Fortran 2008. 
The forthcoming Fortran 2015 standard is intended to be a minor revision. At each 
update some obsolescent features were removed, some mistakes corrected and a 
limited number of new facilities were added.  Fortran is now an ISO/IEC and ANSI 
standard. 
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Character Set 
The following are valid in a Fortran 95 program: 
 
 alphanumeric:    a-z, A-Z, 0-9, and _ (the underscore); the lower case letters are 

equivalent to the upper case letters 
 symbolic: 
 
Symbol Description Symbol Description 
 blank = equals sign 
+ plus sign - minus sign 
* asterisk / slash 
( left parenthesis ) right parenthesis 
, comma . decimal point 
' apostophe " quotation mark 
: colon ; semicolon 
! exclamation mark & ampersand 
< less than > greater than 
% percent $ currency symbol 
? question mark 
 
TAB is not included. 

Intrinsic Types 
Fortran 95 has two broad classes of object type: 
 numeric; 
 non-numeric 
 
which give rise to six simple intrinsic types, known as default types.  These are 
demonstrated by the following code: 
 

INTEGER :: age ! whole number 
REAL :: height ! decimal number 
COMPLEX :: val ! x + iy 
CHARACTER :: sex ! single character 
CHARACTER(LEN=12) :: name ! string 
LOGICAL :: wed ! truth value 

Numeric Storage 
In general, there are two types of numbers used in Fortran 95 programs, INTEGERs 
(whole numbers) and REALs (floating point numbers). 
 
 INTEGERs are stored exactly, often in the range [-2147483648 , 2147483647]. 
 REALs are stored approximately. 

Their form is a mantissa and an exponent.  For example 6.6356 x 1023 
The exponent can take only a finite range of values, typically [-307, 308]. 

 
You can get numeric exceptions if you try to assign a value outside the permitted 
range of values to a variable. 
 
In Fortran 95 you can decide what numeric range is to be supported. 
 
CHARACTERs are stored differently. 
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Literal Constants 
A literal constant is an entity with a fixed value.  For example: 
 

0 12345 ! INTEGER 
-1.0 6.6E-06 ! REAL 
(1.0,3.14) (2.7,1.4) ! COMPLEX 
"Isn't" 'Isn''t' ! CHARACTER 
.TRUE. .FALSE. ! LOGICAL 

 
Note: 
 
 REALs contain a decimal point, INTEGERs do not; 
 REALs can have an exponential form; 
 there is only a finite range of values that numeric literals can take; 
 character literals are delimited by a pair of " or a pair of '; 
 two occurrences of the delimiter inside a string produce one occurrence on output; 
 there are only two LOGICAL values. 

Names 
In Fortran 95 English (or any other natural language) names can be assigned to 
variables (memory locations) and procedures etc.  Each name: 
 
 must be unique within the program; 
 must start with a letter; 
 may use only letters, digits and the underscore; 
 may use the underscore to separate words in long names; 
 may not be longer than 31 characters. 

REAL :: a1 ! valid name 
REAL :: 1a ! not valid name 
CHARACTER :: atoz ! valid name 
CHARACTER :: a_z ! valid name 
CHARACTER :: a-z ! not valid name 
CHARACTER(LEN=8) :: user_name ! valid name 
CHARACTER(LEN=8) :: username ! different name 

Significance of Blanks 
In free form source code blanks must not appear: 
 
 within keywords; 
 within names. 
 

INTEGER :: wizzy ! is a valid keyword 
INT EGER :: wizzy ! is not 
REAL :: user_name ! is a valid name 
REAL :: user name ! is not 

 
Blanks must appear: 
 
 between two separate keywords; 
 between keywords and names not otherwise separated by punctuation or other 

special characters. 
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INTEGER FUNCTION fit(i) ! is valid 
INTEGERFUNCTION fit(i) ! is not 
INTEGER FUNCTIONfit(i) ! is not 

 
Blanks are optional between some keywords mainly `END < construct >' and a few 
others; if in doubt add a blank (it looks better too). 

Implicit Typing 
Any undeclared variable has an implicit type: 
 
 if the first letter of its name is I, J, K, L, M or N then the type is INTEGER; 
 if it is any other letter then the type is REAL. 
 
Implicit typing is potentially very dangerous and should always be turned off by 
adding: 
 

IMPLICIT NONE 
 
at the start of the declaration of variables.  Consider: 

REAL :: body_temp 98.4 
... 

 bodytemp = 36.9 
 
With implicit typing this declares a REAL variable bodytemp and sets it to 36.9 and 
leaves the value in the variable body_temp unaltered. 

Numeric and Logical Type Declarations 
With IMPLICIT NONE variables must be declared.  A simplified syntax follows: 
 
< type > [,< attribute-list >] :: < variable-list >& 

[ =< value >] 
 
Optional components are shown in [square brackets] 
The following are all valid declarations: 
 
INTEGER :: i, j 
REAL :: x, y 
COMPLEX :: val 
LOGICAL :: on, off 

Character Declarations 
Character variables are declared in a similar way to numeric types.  CHARACTER 
variables can: 
 
 refer to one character; 
 refer to a string of characters which is achieved by adding a length specifier to the 

object declaration. 
 
The following are all valid declarations: 
CHARACTER :: sex 
CHARACTER(LEN=10) :: name 
CHARACTER(LEN=10), DIMENSION(10,10) :: Harray 
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Initialisation 
Declaring a variable does not automatically assign a value, say zero, to this variable: 
until a value has been assigned to it a variable is known as an unassigned variable.  
Variables can be given initial values, which can use initialisation expressions and 
literals.  Consider these examples: 
 

INTEGER :: i = 5, j = 100 
REAL :: x, y = 1.0E5 
COMPLEX :: val = (1.0,1.732) 
CHARACTER(LEN=5) :: light = 'Amber' 
CHARACTER(LEN=9) :: gumboot = 'Wellie' 
LOGICAL :: on = .TRUE., off = .FALSE. 

 
gumboot will be padded, to the right, with 3 blanks.  In general, intrinsic functions 
cannot be used in initialisation expressions.  The following can be: RESHAPE, 
SELECTED_INT_KIND,  SELECTED_REAL_KIND,  KIND. 

Constants (Parameters) 
Symbolic constants, known as parameters in Fortran, can easily be set up in a 
declaration statement containing the PARAMETER attribute: 
 

REAL, PARAMETER :: pi = 3.141592 
REAL, PARAMETER :: radius = 3.5 
REAL :: circum = 2.0 * pi * radius 
CHARACTER(LEN=*),PARAMETER :: son = 'bart', dad = "Homer" 

 
Scalar CHARACTER constants can assume their length from the associated literal 
(LEN=*) only if the attribute PARAMETER is present.  The example above is 
equivalent to: 
 

CHARACTER(LEN=4), PARAMETER :: son = 'bart' 
CHARACTER(LEN=5), PARAMETER :: dad = "Homer" 

Parameters should be used: 
 
 if it is known that a variable will only take one value; 
 for legibility where a value such as π occurs in a program; 
 for maintainability when a constant value could feasibly be changed in the future. 

Comments 
It is good practice to include many comments, for example: 
 
PROGRAM Saddo 
! 
! Program to evaluate marriage potential 
! 
LOGICAL  :: TrainSpotter  ! Do we spot trains? 
LOGICAL  :: SmellySocks  ! Have we smelly socks? 
INTEGER  :: i, j    ! Loop variables 
 
 everything after each ! is a comment; 
 the ! in a character literal constant does not begin a comment, for example: 
 

prospects = "No chance of ever marrying!!!" 



 10 

Continuation lines 
A Fortran statement may use at most 132 positions in a single line: up to 39 additional 
continuation lines may be used.  For each continuation line the continuation mark, the 
ampersand (&), is appended to each line that is followed by a continuation line.  For 
example: 
 

CHARACTER(LEN=*), PARAMETER :: son = 'bart', dad = & 
"Homer" 
 

If a token cannot be completed on a line, then the first non-blank character on the next 
non-comment line must be the continuation mark followed immediately by the 
completion of the token.  For example: 
 

CHARACTER(LEN=*), PARAMETER :: son = 'ba& 
&rt', dad = "Homer" 
 

Two continuation marks may be used even when a token is not being split between 
two lines. 

Expressions 
Each of the three broad type classes has its own set of intrinsic (in-built) operators, for 
example, +, // and .AND.  The following are all valid expressions: 
 

NumBabiesBorn + 1 ! numeric valued: addition 
"Ward "//Ward ! character valued: concatenation 
NewRIE .AND. Bus38 ! logical: intersection 

 
Expressions can be used in many contexts and can be of any intrinsic type. 

Assignment 
Assignment is defined between all expressions of the same type, although you are free 
to mix numeric types (with some consequences - see later). 
 
Examples: 
 

a = b - c 
i = i + 1    ! variable name used on both sides of = 
name = initials//surname 

 
The LHS is an object and the RHS is an expression. 

Intrinsic Numeric Operations 
The following operators are valid for numeric expressions: 
 
** exponentiation is a dyadic operator, for example,   10**2, (evaluated right to left); 
* and / multiply (there is no implied multiplication) and divide are dyadic operators, 
for example, 10*7/4; 
+ and - plus and minus or add and subtract are monadic and dyadic operators, for 
example, -3 and 10+7-4; 
They can be applied to literals, constants, scalar and array objects.  The only 
restriction is that the RHS of ** must be scalar.  As an example consider: 
 

a = b - c 
f = -3*6/2 
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Relational and Intrinsic Logical Operators 
These are described in the following chapter. 

Intrinsic Character Operations 
Consider: 
 
CHARACTER(LEN=*), PARAMETER :: str1 = "abcdef" 
CHARACTER(LEN=*), PARAMETER :: str2 = "xyz" 
CHARACTER(LEN=9)              :: str3, str4 
 
Substrings can be taken.  As an example consider: 
 

str1 is “abcdef” 
str1(1:1) is “a” (not str1(1) which is illegal) 
str1(2:4) is “bcd” 
 

The concatenation operator, //, is used to join two strings or substrings: 
 

str3 = str1//str2 
str4 = str1(4:5)//str2(1:2) 

 
would produce 
 

abcdefxyz stored in str3 
dexy stored in str4 

 

Operator Precedence 
 

Operator Precedence Example 
user-defined monadic Highest .INVERSE. A 

** . 10 ** 4 
* or / . 89 * 55 

monadic + or - . - 4 
dyadic + or - . 5 + 4 

// . str1 // str2 
user - defined dyadic Lowest X .DOT. Y 

 
 
Note: 
 
 in an expression with no parentheses, the highest  precedence operator is 

combined with its operands first; 
 in contexts of equal precedence left to right evaluation is performed except for **. 
 
Consider an example of precedence, using the following expression: 
 

x = a+b/5.0-c**d+1*e 
 
Because ** is highest precedence, / and * are next highest, this is equivalent to: 
 

x = a+(b/5.0)-(c**d)+(1*e) 
 
The remaining operators' precedences are equal, so we evaluate from left to right. 
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Mixed Type Numeric Expressions 
In the CPU, calculations must be performed between objects of the same type: if an 
expression mixes type some objects must change type.  The default types have an 
implied ordering: 
 
1. COMPLEX --  highest 
2. REAL 
3. INTEGER --  lowest 
 
The result of an expression is always of the higher type, for example: 
 
INTEGER * REAL gives REAL , (3*2.0 is 6.0) 
REAL * INTEGER gives REAL , (3.0*2 is 6.0) 
COMPLEX * < anytype > gives COMPLEX 
 
The actual operator is unimportant. 
The rules for exponentiation, such as a**b are: 
 
Type of a Type of b Value of a used Value of b used Type of result 
Integer Integer a b Integer 
Integer Real Real(a) b Real 
Integer Complex Cmplx(a,0) b Complex 
Real Integer a b Real 
Real Real a b Real 
Real Complex Cmplx(a,0) b Complex 
Complex Integer a b Complex 
Complex Real a Cmplx(b,0) Complex 
Complex Complex a b Complex 
 

Mixed Type Assignment 
Problems can occur with mixed-type arithmetic.  The rules for type conversion are 
given below: 
 
 INTEGER = REAL 

The RHS is evaluated, truncated (all the decimal places removed) then assigned to the 
LHS. 

 REAL = INTEGER 
 The RHS is evaluated, promoted to be REAL (approximately) and then assigned to 

the LHS. 
 
For example: 
 

REAL :: a = 1.1, b = 0.1 
INTEGER :: i, j, k 
i = 3.9 ! i will be 3 
j = -0.9 ! j will be 0 
k = a – b ! k will be 1 

 
Note: although a and b are stored approximately, the value of k is always 1. 
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Integer Division 
Division of two integers produces an integer result by truncation (towards zero).  
Consider: 
 

REAL :: a, b, c, d, e 
a = 1999/1000 ! LHS a is (about) 1.000 
b = -1999/1000 ! LHS b is (about) -1.000 
c = (1999+1)/1000 ! LHS c is (about) 2.000 
d = 1999.0/1000 ! LHS d is (about) 1.999 
e =1999/1000.0 ! LHS e is (about) 1.999 

 
Great care must be taken when using mixed type arithmetic. 

Formatting input and output 
The coding used internally by the computer to store values is of no concern to us: a 
means of converting these coded values into characters which can be read on a screen 
or typed in from a keyboard is provided by formatting.  A format specification is a list 
of one or more edit descriptors enclosed in round brackets.  Each edit descriptor gives 
the type of data expected (integer, real, character or logical) and the field width 
(counted in number of characters, non-blank or otherwise) of this data value and how 
the data item is represented within its field.  Edit descriptors can be: 
 
 Edit  Value type Format-spec. Value  
 Descriptor  example example 
 wX Space 2X 
 Iw Integer I5         1  or   -5600 
 Fw.d Floating point F7.2 1.00  or  -273.18 
 Ew.d Exponential E9.2   0.10E+01   or 
     -0.27E+03 
 Lw Logical L1 T 
 An Alphanumeric A11 'one billion' 
 Gw.d General G11.3             3.14 
 
The field width is given by a number which immediately follows the letter, unless the 
letter is X in which case the number precedes the letter. 
 
A blank space is simplest of the edit descriptors to specify, consisting of the letter X.  
For example, X means ignore the next character position in the current input line, or 
leave a gap 1 character wide in the current output line.  Multiple spaces are indicated 
by preceding the X by an integer count value, so 2X means skip two positions in the 
input line or leave two spaces in the output line. 
 
The edit descriptor for characters is almost as simple, consisting of the letter A 
followed by an unsigned integer, for example A9.  In this case, if the character value 
were ‘positions’ there would be no trouble as the length of the character string 
equals the width specified.  If the value were ‘characters’ then only the first 9 
symbols would be read in or written out, ie ‘character’.  If instead the value were 
‘places’ then the behaviour at input and output is significantly different.  On input 
the 6 symbols would be read in and would be followed by 3 blanks: on output the 3 
blanks would precede the 6 symbols. 
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For integer values, the edit descriptor has the form I followed by an unsigned integer.  
On output, the integer is adjusted to the right-hand side of its field. 
 
For real values there are two possible forms of edit descriptors. 
One form is Fw.d where w is the field width and d is the number of digits appearing 
after the decimal point.  The decimal point counts as one position in the field.  If there 
is a decimal point in a number being read in, then only the w and not both w and d 
takes effect. 
The other form is Ew.d where w and d are similar to those for the F edit descriptor.  
For input the two forms are identical.  For output, the value is scaled so that its 
absolute value is less than 1 and this value will be followed by an exponent in a field 
of width 4.  After allowing for a sign, the decimal point and the exponent, there can be 
at most w – 6 digits in the number which is written out. 
 
Complex numbers need edit descriptors for a pair of real numbers: these descriptors 
need not be identical. 
 
Logical values use an edit descriptor of the form Lw.  Only if w is at least 7 can the 
values appear as .true. or .false. – otherwise they would be output as T or F in 
the right-most position of the field. 
 
Any of the edit descriptors in a format specification may be preceded by an integer 
which is the repeat count for that descriptor.  For example: 
 
 ‘(I5,I5,F9.4,F9.4,F9.4)’ can be rewritten as ‘(2I5,3F9.4)’ 
 
If there are repeated sequences of edit descriptors then a repeat count can be applied 
to a single sequence.  For example: 
 
‘(2X,A5,F4.1,2X,A5,F4.1)’ can be rewritten as ‘(2(2X,A5,F4.1))’ 
 
If a format specification (without components in parentheses) is used with an input or 
output list that contains more elements than the total number of edit descriptors, 
applying any repeat counts, then a new record will be taken and the format 
specification will be repeated.  On input new records will be read until the list is 
satisfied: this means that for any record which contains more data than is specified by 
the format specification the surplus data are ignored.  If the format specification does 
have components in parentheses and the format is exhausted, then control reverts to 
the repeat factor preceding the left parenthesis corresponding to the last but one right 
parenthesis or to the left parenthesis if there is no repeat factor preceding it. 

WRITE Statement 
A simple form of the WRITE statement which allows you to output to the default 
output device using a default format, is: 
 

Write(*,*)<list> 
 
This form is handy for diagnostic output when testing a program. 
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A general form of the WRITE statement which allows you to output to any device 
using a specified format, is of the form: 
 

Write(unit=u,fmt=<format_specification>)<list> 
 
The unit number allows you to write to any device such as a file or the screen (6 
specifies the screen).  The format specification is a character string, starting with ( 
and ending with ), defining how your data is to be laid out.  <list> is a comma 
separated list of items.  Consider this example code: 
 
PROGRAM Owt 

IMPLICIT NONE 
 CHARACTER(LEN=31) :: & 

format_spec=”(a4,f4.1,2(2x,a5,f4.1))” 
CHARACTER(LEN=25) :: & 

long_name = "Llanfairphwyll...gogogoch" 
REAL :: x=1., y=2., z=3., tol=0.001 
LOGICAL :: lgcl 
lgcl = (abs(y - x) < tol) 
WRITE( 6,fmt=”(a25)”)  long_name 
WRITE(*,”(a30)”)  "Spock says ""illogical & 

&Captain"" " 
WRITE(*,format_spec)  "X = ", x, & 
" Y = ", y, " Z = ", z 
WRITE(*,”(a13,l1)”)  "Logical val: ", lgcl 

END PROGRAM Owt 
 
It produces the following result on the screen: 
 
Llanfairphwyll...gogogoch 
Spock says "illogical Captain" 
X =  1.0   Y =  2.0   Z =  3.0 
Logical val: F 
 
Note: 
 each WRITE statement begins output on a new line; 
 the WRITE statement can transfer any object of intrinsic type to the standard 

output; 
 strings may be delimited by the double or single quote symbols, " or '; 
 two occurrences of the delimiter inside a string produce one occurrence on output. 
 
If the field width of an edit descriptor is too narrow for the numeric value being 
written, then this field will be filled with asterisks.  For example this program 
fragment: 
 
IMPLICIT NONE 
INTEGER :: i = 12345, j=-12345 
WRITE(*,”(2i7)”) i, j 
WRITE(*,”(2i6)”) i, j 
WRITE(*,”(2i5)”) i, j 
 
gives this output: 
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  12345 -12345 
 12345-12345 
12345***** 

READ Statement 
A simple form of the READ statement which allows you to input from the default 
input device using a default format, is: 
 

Read(*,*)<list> 
 
For example, if the type declarations are the same as for the WRITE example, the 
statements: 
 
READ(*,*)  long_name 
READ(*,*)  x, y, z 
READ(*,*)  lgcl 
 
would accept the following input: 
 
Llanphairphwyll...gogogoch 
0.4  5.  1.0e12 
T 
 
Note that each READ statement reads from a new line and the READ statement can 
transfer any object of intrinsic type from the standard input.  The constants being read 
in may be presented in their usual form, but note: 

• complex values must be enclosed in parentheses 
• character constants may be delimited 
• a space must not appear in a constant except in a delimited character constant 

or in a complex constant before or after a numeric field. 
Constants on a line are separated by one or more contiguous spaces, by a comma or 
by a slash.  If there is no constant between successive separators or between the start 
of the record and the first separator then this represents a null value.  A slash separator 
marks the end of the input record and null values are given to any remaining items in 
the input list. 
A general form of the READ statement which allows you to input from any device 
using a specified format is of the form: 
 

Read(unit=u,fmt=<format_specification>)<list> 
 
The unit number allows you to read from any device such as a file or the keyboard (5 
specifies the keyboard), the format specification is a character string defining how 
your data is expected to be laid out, and <list> is a comma separated list of 
variables into which values will be read. 

Prompting for Input 
Suppose a program asks the user for some value, say the temperature in degrees 
Fahrenheit.  If the relevant output and input statements are of the form: 
 

Write(*,‘(a)’,advance=‘no’) & 
     ‘Please type in the temp in F: ’ 
Read(unit=5,fmt=*) Deg_F 
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then the screen dialogue could be the single line: 
 

Please type in the temp in F:  32 
 
instead of: 
 

Please type in the temp in F: 
32 

Reading and writing to a file 
In order to read from or write to a file the file concerned has to be specified.  To do 
this use an OPEN statement such as: 
 
 Open (unit=u, file=<file_name>,iostat=ios) 
 
where u is the unit number in the READ or WRITE statement and <file_name> is 
the file name which is to be associated with the unit: any trailing blanks in the file 
name are ignored.  ios is an integer variable which is set to zero if the statement is 
successfully executed: otherwise it is set to a positive value.  Consider the following 
piece of code: 
 
 Integer :: I=5, ierr 
 Real  :: x=5.3, y=2.45 
 Character(len=24) :: myfile=”result” 

Open (unit=10,file=myfile,iostat=ierr) 
If ( ierr > 0 ) then 
   Write (*,”(a5,a6,a14)”) “File ”, & 

myfile, “ failed to open” 
    Stop 
 End if 
 Write (unit=10,fmt="(i4,f4.1,f5.2)") I,x,y 
 
This will result in the following output being written to the file called result 
 
   5 5.3 2.45 
 
Note in this case the format specification has not been assigned to a character variable 
but has been given as a character literal constant.  Either way of specifying the format 
is acceptable. 
 
In order to disconnect a file from a unit, use a CLOSE statement such as: 
 
 Close (unit=u) 
 
where u is the unit number which was used in the OPEN statement.  Consider the 
following piece of code: 
 
 Integer :: I=5 
 Real  :: x=5.3, y=2.45 

Open (unit=10,file="result") 
 Write (unit=10,fmt="(i4,f4.1,f5.2)") I,x,y 

Close (unit=10) 
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This will result in the file called result being disconnected from unit number 10.  
The file existed for the WRITE statement and will exist after the CLOSE statement, 
and could be connected again to a unit.  Unit number 10 will be free to be connected 
to a file.  On normal termination of execution all connected units are closed, as if 
CLOSE statements were executed. 

How to Write a Computer Program 
There are 4 main steps: 
 
1. specify the problem; 
2. analyse and break down into a series of steps towards solution; 
3. write the Fortran 95 code; 
4. compile and run (i.e., test the program). 
It may be necessary to iterate between steps 3 and 4 in order to remove any mistakes.  
The testing step is very important.  For example, consider a program to convert a 
temperature from Fahrenheit to Celsius scale. 
 
To convert from oF (Fahrenheit) to oC (Celsius) we can use the following formula: 
 

c = 5 x (f - 32)/9 
 

To convert from oC to oK (Kelvin) we add 273. 
 
The algorithm consists of: 

1. READ a value of temperature on the Fahrenheit scale; 
2. calculate the corresponding temperature on the Celsius scale; 
3. WRITE the value just found; 
4. calculate the corresponding temperature in degrees Kelvin; 
5. WRITE this value. 

To program this problem one might use the following code in a file called 
TempFtoC.f95: 
 
PROGRAM Temp_Conversion 
!  Convert a temperature value from Fahrenheit to Celsius 
IMPLICIT NONE 
 

REAL :: Deg_F, Deg_C, Deg_K ! 3 real type variables 
!  Obtain a temperature value 

WRITE(*,”(A28)”,advance=”no”) & 
"Please type in the temp in F: " 

READ(*,*) Deg_F 
!  Convert from Fahrenheit to Celsius 

Deg_C = 5.0*(Deg_F-32.0)/9.0 
!  Output this new value 

WRITE(*,”(A17,F6.1,A2)”) & 
"This is equal to ", Deg_C, " C" 

!  Convert to Kelvin and output 
Deg_K = Deg_C + 273.0 
WRITE(*,”(A4,F6.1,A2)”) "and ", Deg_K, " K" 

 

END PROGRAM Temp_Conversion 
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The form of the program source is essentially free with: 
 
 up to 132 characters per line; 
 significant blanks; 
 `!' comment initiator; 
 `&' line continuation character; 
 `;' statement separator. 
 
Example: 
 
WRITE(*,”(A39)”) "This line is continued & 

&on the next line"; END IF     ! end if statement 
 
Now looking more closely at the code.  It is delimited by 

PROGRAM 
END PROGRAM 

statements.  Between these there are two distinct areas. 
 Specification Part 
 
This gives named memory locations (variables) for use, and specifies the type of each 
variable. 
 
 IMPLICIT NONE -- this should always be present, meaning all variables must be 

declared. 
 REAL :: Deg_F, Deg_C, Deg_K -- declares three REAL (numeric) type 

variables. 
 
Note that Fortran 95 is not case sensitive: K is the same as k and INTEGER is the 
same as integer. 
 Execution Part 
 
This is the part of the program that does the actual work.  It reads in data, calculates 
the temp in oC and oK and writes out results. 
 
 WRITE(*,”(A28)”,advance=”no”) & 
   "Please type in the temp in F: " -- writes the string to the screen; 
 READ(*,*) Deg_F -- reads a value from the keyboard and assigns it to the 

REAL variable Deg_F; 
 Deg_C = 5.0*(Deg_F-32.0)/9.0 -- the expression on the RHS is 

evaluated and assigned to the REAL variable Deg_C. 
 

* is the multiplication operator; 
- is the subtraction operator; 
/ is the division operator; 
= is the assignment operator. 

 
 WRITE(*,”(A17,F6.1,A2)”) "This is equal to ",& Deg_C, 

"C" -- displays a string on the screen followed by the value of a variable (Deg_C) 
followed by a second string ("C"). 

 
By default, input is from the keyboard and output to the screen. 
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Statement Ordering 
The following table details the prescribed ordering: 
 

PROGRAM, FUNCTION, SUBROUTINE or MODULE statement 

USE statements 

 

 

FORMAT 

statements 

IMPLICIT NONE 

PARAMETER 
statements 

IMPLICIT statements 

PARAMETER 
statements 

Derived-Type Definitions, Interface blocks, 
Type declaration and specification statements 

Executable constructs 

CONTAINS statement 

Internal or module procedures 

END statement 

 

 
 
 
 
 

Compiling and Running the Program 
The file containing the source code of the program can be compiled to produce an 
object file.  If this is successful the object file is linked with library files to produce an 
executable file. 
 
Compile-time Errors 
In the previous program, consider what would happen if we accidentally typed: 
 

Dwg_C = 5.0*(Deg_F – 32.0)/9.0 
 

The compiler generates a compile-time or syntax error of the form: 
 
                Dwg_C = 5.0*(Deg_F – 32.0)/9.0 
                ^ 
“TempFtoC.f95”, Line = 10, Column = 4: ERROR: IMPLICIT 
NONE is specified in the local scope, therefore an 
explicit type must be specified for data object "Dwg_C". 
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Run-time Errors 
It is important to exercise as much of the program as possible with test data used to 
ensure it gives the correct answer: 
 

Please type in the temp in F: 
32 
This is equal to    0.0 C 
and  273.0 K 

 
Please type in the temp in F: 
212 
This is equal to  100.0 C 
and  373.0 K 

 
 
With some compilers an expression such as 
 

Deg_C = 5.0*(Deg_F – 32.0)/0.0 
 
would compile but a run-time error would be generated.  This might take the form: 
 

Please type in the temp in F: 
122 
Arithmetic exception 

 

It is also possible to write a program that runs to completion but gives the wrong 
results.  Be particularly wary if using a program written by someone else: the original 
author may have thoroughly tested those parts of the program exercised by their data 
but been less thorough with other parts of the program. 
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Practical Exercise 1 
 
Question 1: The Hello World Program 
Write a Fortran 95 program to write out  Hello World  on the screen. 
 
 
 
 
Question 2: Real Formatting 
Write a program which uses the expression  4.0*atan2(1.0,1.0)  to evaluate π 
and store it in a variable.  Write out this value 9 times using edit descriptors of the 
form  E12.d, F12.d, G12.d  with  d  taking the values 2, 4 and 6. 
 
 
 
 
Question 3: Some Division One Results 
A particular number can be expressed as the sum of several integers, and the sum of 
the reciprocals of these integers is, perhaps, surprising.  Write a program to calculate 
the values of the two following expressions and write a short text and the results: 
 

2 + 6 + 8 + 10 + 12 + 40 
 

40
1

12
1

10
1

8
1

6
1

2
1

+++++  

 
Hint: some constants are better as type INTEGER but some must be type REAL. 
 
Now write similar results using the set of numbers {2,3,10,24,40} 
 
 
 
 
Question 4: Area of a Circle 
Write a simple program to read in the radius and calculate the area of the 
corresponding circle and volume of the sphere.  Demonstrate correctness by 
calculating the area and volume using radii of 2, 5, 10. 
 
Area of a circle: 

 
Volume of a sphere: 

 
Hint: use the value 3.14159 for π. 
 
 

2rarea π=

3
4 3rvolume π

=
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PROGRAM Area_and_Vol 
!...Add specification part 
  WRITE(*,”(A)”) "Type in the radius: " 
  READ(*,*) radius 

  !...Add code to calculate area and volume 

  WRITE(*,”(A26,F5.1,A4,F6.1)”) & 
"Area of circle with radius ",& 
radius, " is ", area 

  WRITE(*,”(A28,F5.1,A4,F6.1)”) & 
"Volume of sphere with radius ",& 
radius, " is ", volume 

END PROGRAM Area_and_Vol 
 
 
 
 
Question 5: Filed values 
Write a program to open the file named statsa which has been provided: statsa 
contains several values, each on a separate line (or record).  Read the first value which 
is an integer, and is in a field of width 5.  Then read the second value which is of type 
real, in a field of width 5 with two digits after the decimal point.  Write these two 
values within a line of explanatory text to the screen. 
 
Now generalize your program by reading the name of the file into a character variable 
and using this character variable in the OPEN statement. 
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2. Logical Operations and Control Constructs 

Relational Operators 
The following relational operators deliver a LOGICAL result when combined with 
numeric operands: 
 

.GT. > greater than 

.GE. >= greater than or equal to 

.LE. <= less than or equal to 

.LT. < less than 

.NE. /= not equal to 

.EQ. == equal to 
 
For example: 
 

INTEGER :: i = 7, j = 3 
LOGICAL :: bool 
bool = i > j 

 
If either or both expressions being compared are complex then only the operators == 
and /= are available. 

Intrinsic Logical Operations 
A LOGICAL expression returns a .TRUE. or .FALSE. result.  The following are 
valid with LOGICAL operands: 
 

.NOT. -- .TRUE. if operand is .FALSE.; 

.AND. -- .TRUE. if both operands are .TRUE.; 

.OR. -- .TRUE. if at least one operand is .TRUE.; 

.EQV. -- .TRUE. if both operands are the same; 

.NEQV. -- .TRUE. if both operands are different. 
 
For example, if T is .TRUE. and F is .FALSE. 
 

  .NOT. T is .FALSE.   .NOT. F is .TRUE. 
T .AND. F is .FALSE. T .AND. T is .TRUE. 
T .OR. F is .TRUE. F .OR. F is .FALSE. 
T .EQV. F is .FALSE. F .EQV. F is .TRUE. 
T .NEQV. F is .TRUE. F .NEQV. F is .FALSE. 
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Operator Precedence 
 

Operator Precedence Example 
user-defined monadic Highest .INVERSE. A 

** . 10 ** 4 
* or / . 89 * 55 

monadic + or - . - 4 
dyadic + or - . 5 + 4 

// . str1 // str2 
>, <=, etc . A > B 

.NOT. . .NOT. Bool 

.AND. . A .AND. B 
.OR. . A .OR. B 

.EQV. or .NEQV. . A .EQV. B 
user-defined dyadic Lowest X .DOT. Y 

 

Control Flow 
Control constructs allow the normal sequential order of execution to be changed.  
Fortran 95 supports: 
 
 conditional execution statements and constructs, (IF ... and IF ... THEN 

... ELSE ... END IF); 
 multi-way choice construct, (SELECT CASE); 
 loops, (DO ... END DO). 

IF Statement 
 The basic syntax of an IF statement is: 
 
IF(< logical-expression >)< exec-stmt > 
 
If < logical-expression > evaluates to .TRUE. then execute < exec-stmt > 
otherwise do not. 
 
For example: 

IF (bool) a = 3 
IF (x > y) Maxi = x 

 
The second means `if x is greater than y then set Maxi to be equal to the value of x'. 
 
More examples: 
 

IF (a*b+c /= 47) bool = .TRUE. 
IF (i /= 0 .AND. j /= 0) k = l/(i*j) 
IF ((i /= 0) .AND. (j /= 0)) k = l/(i*j)  ! same 
IF (i == j .AND. j == k) ...         ! is permitted 
IF (i== j == k) ...              ! is not permitted 
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The IF Statement can be explained by a flow structure.  Consider the IF statement: 
 

IF (I > 17) Write(*,*) "I > 17" 
 
This maps onto the following control flow structure: 
 
 
 
        
 
 
 
 
 
 
 
 
 
When using real-valued expressions (which are approximate) .EQ. and .NE. have 
no useful meaning.  This example shows a way of treating such a case: Tol has been 
set to a suitable small value. 
 

IF (ABS(a-b) < Tol) same = .TRUE. 
 

IF ... THEN ... ELSE Construct 
The block-IF is a more flexible version of the single line IF.  A simple example: 
 

IF (I > 17) THEN 
Write(*,*) "I > 17" 

END IF  
 
This maps onto the following control flow structure: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

If (I > 17) 
I > 
17 I > 17 WRITE(*,*) "I > 17" !Next statement I <= 17 

If (I > 17) 

END IF 

WRITE(*,*) “I > 17” I > 17 I <= 17 
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Consider the IF ... THEN ... ELSE construct: 
 

IF (I > 17) THEN 
Write(*,*) "I > 17" 

ELSE 
Write(*,*) "I <= 17" 

END IF 
 
Note how the indentation helps.  This maps onto the following control flow structure: 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

IF ... THEN .... ELSEIF Construct 
The IF construct has the following syntax: 
 

IF(< logical-expression >)THEN 
< then-block > 

[ ELSEIF(< logical-expression >)THEN 
< elseif-block > 

... ] 
[ ELSE 

< else-block > ] 
END IF 

 
The first branch to have a true < logical-expression > is the one that is 
executed.  If none is found then the < else-block >, if present, is executed.  Each 
of ELSEIF and ELSE is optional. 
 
Consider the IF ...THEN ... ELSEIF construct: 
 

IF (I > 17) THEN 
Write(*,*) "I > 17" 

ELSEIF (I == 17) THEN 
Write(*,*) "I == 17" 

ELSE 
Write(*,*) "I < 17" 

END IF 

If (I > 17) END IF WRITE(*,*) “I > 17” I > 17 
ELSE 

WRITE(*,*) “I <= 17” 
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This maps onto the following control flow structure: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
You can also have one or more ELSEIF branches.  IF blocks may also be nested.   
As an example consider: 
 

IF (x > 3) THEN 
A = B+C*D 

ELSEIF (x == 3) THEN 
A = B*C-D 

ELSEIF (x == 2) THEN 
A = B*B 

ELSE 
IF (y /= 0) A=B 

ENDIF 

Nested and Named IF Constructs 
All control constructs may be nested and optionally may be named: 
 
outa:  IF (a == 0) THEN 
   WRITE(*,”(A5)”) "a = 0" 
 inna:  IF (c /= 0) THEN 
    WRITE(*,”(A16)”) "a = 0 AND c /= 0" 
   ELSE 
    WRITE(*,”(A15)”) "a = 0 BUT c = 0" 
   ENDIF inna 
  ELSE IF (a > 0) THEN 
   WRITE(*,”(A5)”) "a > 0" 
  ELSE 
   WRITE(*,”(A13)”) "a must be < 0" 
 END IF outa 
 
The names may only be used once per program unit. 

If (I > 17) 
THEN I < = 17 

ELSEIF (I= =17) THEN WRITE(*,*) “I= =17” WRITE(*,*) “I<17” 
WRITE(*,*) “I>17” 

END IF I > 17 I = = 17 ELSE 
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Example Using IF constructs 
A program written to calculate the roots of a quadratic equation of the form: 

ax bx c2 0+ + =  
will use some of the constructs just described. 
The roots are given by the following formula: 

x
b b ac

a
=
− ± −2 4

2
 

 
The algorithm consists of: 
 
1. READ values of a, b and c; 
2. if a is zero then stop as we do not have a quadratic; 
3. calculate the value of discriminant D = b ac2 4−  

4. if D is zero then there is one root: 
− b
a2

 

5. if D > 0 then there are two real roots:
− +b D

a2
 and 

− −b D
a2

 

6. if D < 0 there are two complex roots: 
− + −b i D

a2
 and 

− − −b i D
a2

 

7. WRITE the solution. 
 
The program for this might look like this: 
 
PROGRAM QES 
IMPLICIT NONE 
INTEGER :: a, b, c, D 
REAL :: Real_Part, Imag_Part 
WRITE(*,”(A29)”) "Type in values for a, b and c" 
READ(*,*) a, b, c 
IF (a /= 0) THEN 
! Calculate discriminant 
 D = b*b - 4*a*c 
 IF (D == 0) THEN ! one root 
  WRITE(*,*”(A8,F6.1)”) "Root is ", -b/(2.0*a) 
 ELSE IF (D > 0) THEN ! real roots 
  WRITE(*,”(A9,F6.1,1X,A3,F5.1)”) & 
  "Roots are",(-b+SQRT(REAL(D)))/(2.0*a),& 
  "and",  (-b-SQRT(REAL(D)))/(2.0*a) 
 ELSE ! complex roots 
  Real_Part = -b/(2.0*a) 
  ! D < 0 so must take SQRT of -D 
  Imag_Part = (SQRT(REAL(-D))/(2.0*a)) 
  WRITE(*,”(A9,F6.1,1X,A1,F5.1,A1)”) & 
  "1st Root ", Real_Part, "+", Imag_Part, "i" 
  WRITE(*,”(A9,F6.1,1X,A1,F5.1,A1)”) & 
  "2nd Root ", Real_Part, "-", Imag_Part, "i" 
 END IF 
ELSE ! a == 0 
 WRITE(*,”(A24)”) "Not a quadratic equation" 
END IF 
END PROGRAM QES 
 



 30 

The previous program introduces some new ideas: 
 
 IF construct -- different statements are executed depending upon the value of the 

logical expression; 
 relational operators --  /= (is not equal to),  == (is equal to),  > (is greater than); 
 nested constructs -- one control construct can be located inside another; 
 procedure call -- SQRT(X) returns the square root of X; 
 type conversion -- in the above call, X must be of type REAL.  In the program, D is 

INTEGER, REAL(D) converts D to be real valued.  To simplify the coding we 
calculate the discriminant once and store it in D. 

 

SELECT CASE Construct 
A simple example of a select case construct is: 
 

SELECT CASE (i) 
CASE (2,3,5,7) 

WRITE(*,”(A10)”) "i is prime" 
CASE (10:) 

WRITE(*,”(A10)”) "i is >= 10" 
CASE DEFAULT 

WRITE(*,”(A26)”) "i is not prime and is < 10" 
END SELECT 

 
An IF .. ENDIF construct could have been used but a SELECT CASE is neater and 
more efficient.  Here is the same example: 
 

IF(i==2 .OR. i==3 .OR. i==5 .OR. i==7) THEN 
WRITE(*,”(A10)”) "I is prime" 

ELSE IF(i >= 10).THEN 
WRITE(*,”(A10)”) "I is >= 10" 

ELSE 
WRITE(*,”(A26)”) "I is not prime and is < 10" 

END IF 
 
The SELECT CASE construct can be explained by a flow structure.  Consider the 
SELECT CASE construct: 
 

SELECT CASE (I) 
CASE(1);      Write(*,*) "I=1" 
CASE(2:9);    Write(*,*) "I>=2 and I<=9" 
CASE(10);     Write(*,*) "I=10" 
CASE DEFAULT; Write(*,*) "I<1 or I>10" 

END SELECT 
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This maps onto the following control flow structure: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The SELECT CASE construct is useful if one of several paths must be chosen based 
on the value of a single expression. 
 
The syntax is as follows: 
 
[ < name >:] SELECT CASE (< case-expr >) 

[ CASE (< case-selector >)[ < name > ] 
< exec-stmts > ] ... 

[ CASE DEFAULT [ < name > ] 
< exec-stmts > ] 

END SELECT [ < name > ] 
 
Note: 
 
 the  < case-expr >  must be scalar and of type INTEGER, LOGICAL or 

CHARACTER; 
 the  < case-selector >  is a parenthesised single value or range of the same 

type as < case-expr >, for example, (.TRUE.), (1) or (99:101); 
 there can only be one CASE DEFAULT branch; 
 control cannot jump into a CASE construct. 

 

 

 

 

 

SELECT CASE (I) Case default 

END SELECT 
SELECT 

Case (1) Case (2:9) Case (10) WRITE(*,*) 

“I==1” 

WRITE(*,*) 

“I>=2 and I<=9” 

WRITE(*,*) 

“I = 10” 

WRITE(*,*) 

“I<1 or I>10” 
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The DO construct 
There are mathematical problems which require the iteration of a piece of Fortran 
code.  For example, the fragment of program shown below sums the logarithmic 
series for a particular value of x: 
 

INTEGER :: den=2 
REAL :: num=-1.0, sum, x=0.8, xx 
sum = x 
xx = x*x 
DO 
  sum = sum + num*xx/den 
  num = -num 
  den = den + 1 
  WRITE(*,"(f7.4)") sum 
END DO 

 
This will generate a succession of values converging on the sum of an infinite number 
of terms: not really a practical program! 

Conditional Exit Loop 
It is possible to set up a DO loop which is terminated by simply jumping out of it: 
 
INTEGER :: i 
i = 0 
DO 

i = i + 1 
IF (i > 100) EXIT 
WRITE(*,”(A4,I4)”) "I is", i 

END DO 
! if I>100  control jumps here 
WRITE(*,”(A27,I4)”) & 

"Loop finished. I now equals", i 
 
This will generate: 
 

I is 1 
I is 2 
I is 3 
.... 
I is 100 
Loop finished. I now equals 101 

 
The EXIT statement tells control to jump out of the current DO loop. 
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Conditional Cycle Loops 
You can also set up a DO loop which, on some iterations, only executes a subset of its 
statements.  Consider: 
 
INTEGER :: i 
i = 0 
DO 

i = i + 1 
IF (i >= 50 .AND. i <= 59) CYCLE 
IF (i > 100) EXIT 
WRITE(*,”(A4,I4)”) i 

END DO 
WRITE(*,”(A27,I4)”) & 

"Loop finished. I now equals", i 
 
This will generate: 
 

I is 1 
I is 2 
....  
I is 49 
I is 60 
.... 
I is 100 
Loop finished. I now equals 101 
 

CYCLE forces control to the innermost active DO statement and the loop begins a new 
iteration. 

Named and Nested Loops 
Loops can be given names and an EXIT or CYCLE statement can be made to refer to 
a particular loop.  This is demonstrated by the code: 
 
0-- outa: DO 
1-- inna: DO 
2--  IF (a > b) EXIT outa  ! jump to line 9 
4--  IF (a == b) CYCLE outa  ! jump to line 0 
5--  IF (c > d) EXIT inna  ! jump to line 8 
6--  IF (c == a) CYCLE   ! jump to line 1 
7--  END DO inna 
8-- END DO outa 
9--  ... 
 

The (optional) name following the EXIT or CYCLE determines which loop the 
statement refers to.  If no name is given the EXIT terminates the innermost loop 
containing it and the CYCLE transfers control to the END DO of the corresponding 
loop.  Note that the name given to a loop cannot be given to any other object in the 
program unit. 
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Indexed DO Loops 
Loops can be written which cycle a fixed number of times.  For example: 
 

DO i = 1, 100, 1 
... ! i takes the values 1,2,3,...,100 
... ! 100 iterations 

END DO 
The formal syntax is as follows: 
 

DO < DO-var > = < expr1 >, < expr2 > [,< expr3 > ] 
< exec-stmts > 

END DO 
 
The < DO-var > must be a named scalar integer variable: it must not be explicitly 
modified within the DO construct. 
The number of iterations, which is evaluated before execution of the loop begins, is 
calculated as: 
 
MAX(INT(< expr2 >-< expr1 >+< expr3 >)/< expr3 >), 0) 
 
If this is zero or negative then the loop is not executed. 
If < expr3 > is absent it is assumed to be equal to 1. 
 
Here are four examples of different loops: 
 
Upper bound not exact 
 

DO i = 1, 30, 2 
... ! i takes the values 1,3,5,7,...,29 
... ! 15 iterations 

END DO 
 
Negative stride 
 

DO j = 30, 1, -2  
... ! j takes the values 30,28,26,...,2 
... ! 15 iterations 

END DO 
 
Zero-trip loop 
 

DO k = 30, 1, 2 
... ! 0 iterations 
... ! loop skipped 

END DO 
 

Missing stride -- assumed to be 1 
 

DO l = 1, 30 
... ! l takes the values 1,2,3,...,30 
... ! 30 iterations 

END DO 
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DO construct index 
The value of the index variable is incremented at the end of each loop ready for the 
next iteration of the loop: this value is available outside the loop.  With a piece of 
code like this there are three possible outcomes for the index variable: 
 

DO i = 1, n 
  ... 
  IF (i == k) EXIT 
  ... 
END DO 

 
1. If, at execution time, n is less than 1 it is a zero-trip loop so i is given the value 1 

and control passes to the statement following END DO. 
2. If n is greater than 1 and not less than k then i will have the same value as k 

when EXIT transfers control to the statement following END DO. 
3. If n is greater than 1 and less than k then the loop will be executed n times with i 

taking the values 1,2,...,n.  At the end of the nth loop i will be incremented to 
n+1 and will have this value when control transfers to the statement following 
END DO. 
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Practical Exercise 2 
Question 1: Parity 
Write a program to read several numbers, positive or negative, one at a time and for 
each to write out a line giving the number just read and a description of it as an odd or 
even number.  Stop if the number read in is zero. 
 
 
Question 2: A Triangle Program 
Write a program to accept three (INTEGER) lengths and report back on whether these 
lengths could define an equilateral, isosceles or scalene triangle (3, 2 or 0 equal length 
sides) or whether they cannot form a triangle. 
 
Demonstrate that the program works by classifying the following: 
 
1. (3, 3, 3) 
2. (3, 3, 4) 
3. (3, 4, 5) 
4. (3, 3, 7) 
 
Hint: If three lengths form a triangle then 2 times the longest side must be less than 
the sum of all three sides.  In Fortran 95 terms, the following must be true: 
(2*MAX(side1,side2,side3) < side1+side2+side3) 
 
 
Question 3: The Ludolphian Number 
Write a program which uses 6 variables of type real; a, b, c, d, e, f (or any other 
names you choose).  Set initial values as follows, remembering to match the type of 
constant to the type of variable: 

1=a ,    
2
1

=b ,    
4
1

=c ,    1=d  

 
Code these 7 lines as Fortran 95 statements (with constants of the correct type) within 
a loop which is to be obeyed 4 times: 

ae =  

2
)( baa +

=  

ebb ×=  
2)( eadcc −×−=  

dd 2=  

c
baf
4
)( 2+

=  

output f  
 
This algorithm was developed by Tamura and Kanada. 
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Question 4: Odd Numbers 
Write a program which: 
1. Asks how many odd numbers you want to use. 
2. Reads in the number of odd numbers to use(16 would be sufficient to test your 

program). 
3. Sums this many odd numbers, starting from 1  (Do not use the formula for the sum 

of an arithmetic progression!) 
As each number is added in, write out a count of how many odd numbers have 
been added in and what the sum is.  So the first line will simply be: 

  1 1 
 
 
Question 5: Simple Sequences (symmetric, unitary, descending) 
For each of these sequences set an initial value and use a DO-loop. 
 

a) Write a program to evaluate and write out each of the terms in this sequence: 
 

1 x 1 
11 x 11 

111 x 111 
: 

11111 x 11111 
 

 Now evaluate and write out the next term in this sequence.  Anything strange? 
 

b) Write a program to evaluate and write out each of the terms in this sequence: 
 

0 x 9  +  1 
1 x 9  +  2 
12 x 9  +  3 
123 x 9  +  4 

: 
12345678 x 9  +  9 

 
c) Write a program to evaluate and write out each of the terms in this sequence: 

 
1 x 8  +  1 
12 x 8  +  2 
123 x 8  +  3 

: 
123456789 x 8  +  9 

 
 
Question 6: Mathematical Magic 
If you take a positive integer, halve it if it is even or triple it and add one if it is odd, 
and repeat, then the number will eventually become one.  This is known as the 
Syracuse algorithm. 
 
Set up a loop containing a statement to read in a number (input terminated by zero) 
and a loop to write out the sequence obtained from each input.  When the number 
written out is 1 then execution should terminate with an appropriate message. 
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Demonstrate that your program works by outputting the sequences generated by the 
following sets of numbers: 
 

a) 7 
b) 106, 46, 3, 0 

 
 
 
Question 7: Rooting 
Write a program which uses 2 variables of type real; a, x (or any other names you 
choose).  Issue prompts and read in initial values as follows: 
 
a is the number whose square root we are finding, 
x is an estimate of the root. 
 
Code these 2 lines as Fortran 95 statements within a loop which is to be obeyed 
several times, say 6 times: 
 

x = (x + a/x)/2 
output x 
 
The algorithm used here is the Newton-Raphson one. 
You might be interested to compare your result with that given by the intrinsic 
function sqrt(a) 
 
 
 
Question 8: Coins 
Assume you have coins with face values 50, 20, 10, 5, 2 and 1.  Write a program 
which reads in the price of some item which is not greater than 100 and finds the 
fewest number of coins whose sum equals this price.  Write out how many of each 
value coin is used: stop if the original price is 0. 
 
 
 
Question 9: Vowel, Consonant or Other 
Using a SELECT CASE block write a program that reads in any number of 
characters, one at a time, and for each character writes out whether it is a vowel, a 
consonant or neither: read in the ‘@’ character to terminate the input. 
 
 
 
Question 10: Decimal to Roman Numerals Conversion 
Using a SELECT CASE block and integer division write a program that reads in a 
decimal number between 0 and 999 and writes out the equivalent in Roman Numerals. 
Demonstrate that your program works with the numbers: 
1. 888 
2. 0 
3. 222 
4. 536 



 39 

The output should contain no embedded spaces. 
 

0      
1 i 1. x 1.. c 
2 ii 2. xx 2.. cc 
3 iii 3. xxx 3.. ccc 
4 iv 4. xl 4.. cd 
5 v 5. l 5.. d 
6 vi 6. lx 6.. dc 
7 vii 7. lxx 7.. dcc 
8 viii 8. lxxx 8.. dccc 
9 ix 9. xc 9.. cm 

 
Hint: Use a CHARACTER string (or CHARACTER strings) to store the number before 
output.  The `longest' number is 888, dccclxxxviii (12 characters). 
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3. Arrays 
Arrays (or matrices) hold collections of different values of the same type.  Individual 
elements are accessed by subscripting the array. 
 
A 15-element array can be visualised as: 
 

1  2  3   13 14 15 
 
And a 5 x 3 array as: 
 
 
 

1,1 1,2 1,3 
2,1 2,2 2,3 
3,1 3,2 3,3 
4,1 4,2 4,3 
5,1 5,2 5,3 

 
Every array has a type and each element holds a value of that type.  Here are some 
examples of declarations used in Fortran: 
 
REAL, DIMENSION(15)      :: X 
REAL, DIMENSION(1:5,1:3) :: Y, Z ! 5 rows, 3 columns 
 
The above are explicit-shape arrays.  Further terminology you might meet includes: 
 
 rank -- number of dimensions: maximum 7.  Rank of X is 1; rank of Y and Z is 2. 
 bounds -- lower and upper limits of indices: default lower bound is 1.  Bounds of 

X are 1 and 15; bounds of Y and Z are 1 and 5 and 1 and 3. 
 extent -- number of elements in dimension.  Extent of X is 15; extents of Y and Z are 5 

and 3. 
 size -- total number of elements.  Size of X, Y and Z is 15. 
 shape – ordered sequence of extents.  Shape of X is (15); shape of Y and Z is 

(5,3). 
 conformable -- same shape.  Y and Z are conformable. 

Declarations 
Literals and constants can be used in array declarations: 
 

REAL, DIMENSION(100) :: R 
REAL, DIMENSION(1:10,1:10) :: S 
REAL, DIMENSION(-10:-1) :: X 
INTEGER, PARAMETER :: lda = 5 
REAL, DIMENSION(0:lda-1) :: Y 
REAL, DIMENSION(1+lda*lda,10) :: Z 

 
But note: 
 the default lower bound is 1; 
 bounds can begin and end anywhere. 

Dimension 
2 
2 

Dimension 
1 
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Now consider how these arrays look diagrammatically: 
 

REAL, DIMENSION(15)       :: A 
 
Individual array elements are denoted by subscripting the array name by an INTEGER, 
for example, A(7), 7th element of A: 
 

A(1)      A(15) 
 
 

REAL, DIMENSION(-4:0,0:2) :: B 
REAL, DIMENSION(5,3)      :: C 
REAL, DIMENSION(0:4,0:2)  :: D 

 
or C(3,2), 3rd row, 2nd column of C: 
 
 
B(-4,0)          B(-4,2) 
C(1,1)      C(1,3) 
D(0,0)          D(0,2) 
       

         
     
         

B(0,0)      B(0,2) 
C(5,1)          C(5,3) 
D(4,0)      D(4,2) 
 

Array Element Ordering 
Organisation in memory: 
 
 Fortran 95 does not specify anything about how arrays should be located in 

memory.  It has no storage association. 
 Fortran 95 does define an array element ordering for certain situations, which is of 

column major form. 
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The array is conceptually ordered as: 
 

                
first element             
C(1,1)             C(1,3) 
                
                
                
                
                
                
                
                
                
C(5,1)             C(5,3) 
          last element 

 
C(1,1),C(2,1),..,C(5,1),C(1,2),C(2,2),..,C(5,3) 
 

Array Sections 
These are specified by subscript-triplets for each dimension of the array.  The general 
form is: 
 
[< bound1 >]:[< bound2 >][:< stride >] 
 
The section starts at < bound1 > and ends at or before < bound2 >. 
< stride > is the increment by which the elements are selected. 
 
< bound1 >, < bound2 > and < stride > must all be scalar integer 
expressions.  Thus, almost all of these are valid sections of the previously declared 
array A: 
 
A(:)  ! the whole array 
A(3:9)  ! A(3) to A(9) in steps of 1 
A(3:9:1) ! as above 
A(m:n)  ! A(m) to A(n) 
A(m:n:k) ! A(m) to A(n) in steps of k 
A(8:3:-1) ! A(8) to A(3) in steps of –1 
A(8:3)  ! A(8) to A(3) in steps of 1  => Zero size 
A(m:)  ! from A(m) to UBOUND(A) 
A(:n)  ! from LBOUND(A) to A(n) 
A(::2)  ! from LBOUND(A) to UBOUND(A) in steps of 2 
A(m:m) ! 1 element section of rank 1 
A(m)  ! scalar element - not a section 
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The following statements illustrate the declaration of an array and some sections of it: 
 

REAL, DIMENSION(1:6,1:8) :: P 
 

                 
                
                
                
                
                

 
P(1:3,1:4) P(1:6:2,1:8:2) 

 
Two sections each of shape 3,4 
 

         
        
        
        
        
        

 
P(3,2:7) P(3:3,2:7) 

 
P(3,2:7) is a section of rank 1 whereas P(3:3,2:7) is a section of rank 2. 
 

Array Conformance 
Two arrays or sub-arrays are said to be conformable if they have the same shape 
(identical rank and extents): a scalar is conformable with any array. 

Array Syntax 
You can reference a particular element of an array by using the array name and a valid 
subscript.  Using the arrays which were declared previously: 
 

REAL, DIMENSION(15)       :: A 
REAL, DIMENSION(-4:0,0:2) :: B 
REAL, DIMENSION(5,3)      :: C 
REAL, DIMENSION(0:4,0:2)  :: D 

 
A(1) = 0.0 sets one element to zero, 
B(0,0) = A(3) + C(5,1)  sets an element of B to the sum of an  

element of A and an element of C. 
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Whole Array Expressions 
If an unary intrinsic operation is applied to an array this produces an array of the same 
shape where each element has a value equal to the operation being performed on the 
corresponding element of the operand: 
 

B = SIN(C) ! B(i,j) = SIN(C(i+5,j+1)) 
 
Similarly if a binary intrinsic operation is applied to two arrays of the same shape this 
produces an array of the same shape where each element has a value equal to the 
operation being performed on the corresponding element of the operand: 
 

B = C + D ! B(i,j) = C(i+5,j+1) + D(i+4,j) 
 
The correspondence of elements in these operations is by position in each extent and 
not by subscript. 
 
A scalar conforms to an array of any shape with the same value for every element: 
 

C = 1.0   ! C(i,j) = 1.0 
 
Array Section Expressions 
The rules which apply to whole array expressions also apply to array section 
expressions. 
 
The following program performs an array operation on only certain elements and uses 
three functions on arrays.  In each case an array section has been used: the statement, 
the two transformational and one elemental functions are described before the 
program code is given. 
 
The Fortran standard does not prescribe the order in which scalar operations in any 
array expression are executed so the compiler is free to optimize such expressions. 

WHERE statement and construct 
The general form of the statement is: 
 
WHERE (<logical-array-expr>) <array-variable> = <expr> 
 
The logical array expression  <logical-array-expr>  must have the same shape 
as <array-variable>.  It is evaluated first and only for those elements which have 
the value true are the corresponding elements of <expr> evaluated and assigned to 
the corresponding elements of <array-variable>.  For all other elements the 
corresponding values of <expr> are not evaluated and the corresponding elements of 
<array-variable> retain their existing values. 
A single logical array expression can be used as a mask controlling several array 
assignments if all the arrays are of the same shape: 
 
WHERE (<logical-array-expr>) 

<array-assignments> 
END WHERE 
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COUNT function 
The general form of the function is: 
 
COUNT (<logical-array-expr>) 
 
This returns the integer value of the number of elements in the logical array 
expression  <logical-array-expr>  which have the value true.  For example: 
 
nonnegP = COUNT(P > 0.0) 

SUM function 
The general form of the function is: 
 
SUM (<array>) 
 
This returns the sum of the elements of an integer, real or complex <array>: it 
returns the value zero if the <array> has size zero.  For example: 
 
sumP = SUM(P) 

MOD function 
The general form of the function is: 
 
MOD (A,P) 
 
This returns the remainder A modulo P , that is A-INT(A/P) * P.  A and P must both 
be of type integer or real, and P must be non-zero. 
 
An old method of multiplying two numbers is to write down the two numbers and 
then generate a sequence from each in the following manner.  Choose one and halve 
it, discarding any remainder, and continue until it becomes 1: double the other number 
as many times as the first was halved.  Cross out the numbers in the doubling 
sequence which correspond to a number in the halving sequence which is even: then 
sum the remaining numbers.  For example, to multiply 13 by 37: 
 

13 6 3 1  
37 74 148 296 481 
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PROGRAM old_times 
! An old method of multiplying two integers, 
!  described on page 44 of Curious and Interesting Numbers. 
! program written by Neil Hamilton-Smith, March 2006 
IMPLICIT NONE 
INTEGER :: n=2, p1, p2, p3, z 
INTEGER, PARAMETER :: rn = 32 
INTEGER, DIMENSION(1:rn) :: r1, r2 
 

Write(*,"(a46)",advance="no") & 
"Please give the two numbers to be multiplied: " 
Read(*,*) p1, p2 
 
! store the two sequences of values in arrays r1 and r2 
r1(1) = p1 
r2(1) = p2 
DO 
  r1(n) = r1(n-1)/2 
  r2(n) = r2(n-1)*2 
  IF ( r1(n) == 1 ) EXIT 
  n = n + 1 
  IF ( n > rn ) THEN 
    Write(*,"(a43,i3)") & 
      "Arrays r1, r2 need upper bound greater than", rn 
    STOP 
  END IF 
END DO 
 

! cross out value in r2 if value in r1 is even 
WHERE (Mod(r1(1:n),2) == 0) r2(1:n) = 0 
 

! count the zeros in r2: equals count of evens in r1. 
! For interest, not strict necessity 
z = COUNT(r2(1:n) == 0) 
Write(*,"(a42,i4)") & 
  " Number of even numbers in halved row =", z 
 

! sum the values (including zeros) in r2 
p3 = SUM(r2(1:n)) 
Write(*,"(a10,i5,a4,i5,a3,i8)") "product of", & 
  p1, " and", p2, " is", p3 
 
END PROGRAM old_times 
 
 
Suppose we have an array of numbers as shown below and wish to determine the 
minimum and maximum values and their positions within the array: 
 

3 6 17 24 15 
10 18 21 12 4 
19 25 13 1 7 
22 14 5 8 16 
11 2 9 20 23 

 
The program to find the four items will use four transformational functions. 
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MINVAL function 
The general form of the function is: 
 
MINVAL (<array>) 
 
This returns the minimum value of an element of an integer or real <array>: it 
returns the largest positive value supported by the processor if the <array> has size 
zero. 
For example: 
 

minP = MINVAL(P) 
 

MAXVAL function 
The general form of the function is: 
 
MAXVAL (<array>) 
 
This returns the maximum value of an element of an integer or real <array>: it 
returns the largest negative value supported by the processor if the <array> has size 
zero. 
For example: 
 

maxP = MAXVAL(P) 
 

MINLOC function 
The general form of the function is: 
 
MINLOC (<array>) 
 
This returns a rank-one default integer array of size equal to the rank of <array>: its 
value is the sequence of subscripts of an element of minimum value, as though all the 
lower bounds of <array> were 1.  If there is more than one such element then the 
first in array element order is taken. 

MAXLOC function 
The general form of the function is: 
 
MAXLOC (<array>) 
 
This returns a rank-one default integer array of size equal to the rank of <array>: its 
value is the sequence of subscripts of an element of maximum value, as though all the 
lower bounds of <array> were 1.  If there is more than one such element then the 
first in array element order is taken. 
 
The program could be: 
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program seek_extremes 
implicit none 
! showing use of four intrinsic array functions 
integer, dimension(1:5,1:5) :: magi 
integer, dimension(1:2)     :: posmax, posmin 
integer :: m1, m25 
 

! assign values to the rank-two array magi 
 

m1 = minval(magi) 
m25 = maxval(magi) 
posmin = minloc(magi) 
posmax = maxloc(magi) 
write(*,"(a,i3,a,i2,a,i2)") "The least value,", m1, & 
  ", is in row", posmin(1), " and column", posmin(2) 
write(*,"(a,i3,a,i2,a,i2)") "The greatest value,", & 
  m25, ", is in row", posmax(1), " and column", posmax(2) 
 

end program seek_extremes 

Array I/O 
The conceptual ordering of array elements is useful for defining the order in which 
array elements are output.  If A is a rank 2 array then 
 

WRITE(*,*) A 
 
would produce output in the order: 
 

A(1,1),A(2,1),A(3,1),..,A(1,2),A(2,2),.. 
and 

READ(*,*) A 
 
would assign to the elements in the above order. 
 
Using intrinsic functions such as RESHAPE or TRANSPOSE you could change this 
order.  As an example consider the matrix A: 
 

1 4 7 

2 5 8 

3 6 9 
 
The following WRITE statements 
 
... 
WRITE(*,”(A19,I2)”)  'Array element =',a(3,2) 
WRITE(*,”(A19,3I2)”) 'Array section =',a(:,1) 
WRITE(*,”(A19,4I2)”) 'Sub-array =',a(:2,:2) 
WRITE(*,”(A19,9I2)”) 'Whole Array =',a 
WRITE(*,”(A19,9I2)”) 'Array Transp''d =', & 
&TRANSPOSE(a) 

END PROGRAM WrtArray 
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produce on the screen: 
 
   Array element = 6 
   Array section = 1 2 3 
       Sub-array = 1 2 4 5 
     Whole Array = 1 2 3 4 5 6 7 8 9 
  Array Transp'd = 1 4 7 2 5 8 3 6 9 
 

The TRANSPOSE Intrinsic Function 
TRANSPOSE is a general intrinsic function, which takes a rank-two matrix and 
returns a rank-two matrix of the same type which is its transpose, ie each element (i,j) 
is replaced by element (j,i): 
 

TRANSPOSE(<matrix>) 
 
For example: 
 

1 4 7 
TRANSPOSE 

1 2 3 

2 5 8  4 5 6 

3 6 9  7 8 9 
 
 

Array Constructors 
Used to give rank one arrays or sections of arrays specific values.  For example: 
 

IMPLICIT NONE 
INTEGER :: I 
INTEGER, DIMENSION(10) :: ints 
REAL, DIMENSION(4) :: heights 
heights = (/5.10, 5.6, 4.0, 3.6/) 
ints = (/ 100, (i, i=1,8), 100 /) 
... 

 
 constructors and array sections must conform. 
 must be rank 1. 
 for higher rank arrays use RESHAPE intrinsic. 
 (i, i=1,8) is an implied DO and is 1,2,..,8: it is possible to specify a stride. 
 the values in the constructor are assigned in order to the elements of the array. 
 

The RESHAPE Intrinsic Function 
RESHAPE is a general intrinsic function, which delivers an array of a specific shape 
given by the rank-one integer array <shape>: 
 

RESHAPE(<source>, <shape>) 
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For example: 
 

! declare an array A of rank 2 
INTEGER, DIMENSION(1:2,1:2) :: A 
! assign values to this array A 
A = RESHAPE((/1,2,3,4/),(/2,2/)) 

 
A is filled in array element order and looks like: 
 

1 3 
2 4 

 
Visualisation: 
 

1 2 3 4 
  RESHAPE 

Named Array Constants 
Named array constants may be created: 

INTEGER, DIMENSION(3), PARAMETER :: & 
Unit_vec = (/1,1,1/) 

REAL, DIMENSION(3,3), PARAMETER :: & 
Unit_matrix = & 

RESHAPE((/1,0,0,0,1,0,0,0,1/),(/3,3/)) 
 

Allocatable Arrays 
Fortran 95 allows arrays to be created by dynamic memory allocation. 
 
 Declaration: 
 

INTEGER, DIMENSION(:), ALLOCATABLE :: ages  ! rank 1 
REAL, DIMENSION(:,:), ALLOCATABLE  :: speed ! rank 2 

 
Note the ALLOCATABLE attribute and fixed rank.  These are known as deferred-
shape arrays because the actual shape is deferred until allocation. 

 
 Allocation: 
 

READ(*,*) upbnd 
ALLOCATE(ages(1:upbnd), STAT=ierr) 
IF (ierr /= 0) THEN 

WRITE(*,”(A)”) "ages : Allocation failed" 
STOP 

END IF 
 
 the optional STAT= field reports on the success of the storage request.  If the 

INTEGER variable ierr is zero the request was successful otherwise it failed. 
 
 
 
 

1    3 
2    4
 
2       
4
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Deallocating Arrays 
Storage can be reclaimed by using the DEALLOCATE statement: 
 

DEALLOCATE(ages,STAT=ierr) 
 
 it is an error to deallocate an array which does not have the ALLOCATE attribute 

or one that has not previously been allocated space; 
 the STAT= field is optional but its use is recommended; 
 there is an intrinsic inquiry function, ALLOCATED, which returns a scalar 

LOGICAL value reporting on the status of an array; 
 

IF (ALLOCATED(ages)) DEALLOCATE(ages,STAT=ierr) 
 
 if a procedure containing an allocatable array which does not have the SAVE 

attribute (see page 62) is exited without the array being DEALLOCATEd then this 
storage becomes inaccessible. 

Vector and Matrix Multiplication 
There are two intrinsic functions which perform vector and matrix multiplications.  
Each function has two arguments which are both of numeric type (integer, real or 
complex) or both of logical type: the result is of the same type as the multiply or 
logical and operation between two such scalars. 
 
The function for vectors is: 
 

dot_product(vector_a, vector_b) 
 
which requires two arguments of rank-one and the same size. 

• If vector_a is of type integer or real then the result is 
sum(vector_a * vector_b) 

• If vector_a is of type complex then the result is 
sum(conjg(vector_a) * vector_b) 

• If vector_a is of type logical then the result is .true. if any element of  
vector_a .and. vector_b is .true.. 

 
If at least one argument is a rank-two matrix then the function is: 
 

matmul(matrix_a, matrix_b) 
 
where there are three possibilities depending on the shape of the arguments. 

• If matrix_a has shape (n,m) and matrix_b has shape (m,k) then the 
result has shape (n,k) and element (i,j) has the value 

sum(matrix_a(i,:) * matrix_b(:,j)) 
• If matrix_a has shape (m) and matrix_b has shape (m,k) then the result 

has shape (k) and element (j) has the value                            
sum(matrix_a * matrix_b(:,j)) 

• If matrix_a has shape (n,m) and matrix_b has shape (m) then the result 
has shape (n) and element (i) has the value                 
sum(matrix_a(i,:) * matrix_b) 

 
• If the arguments are of logical type the shapes are as for numeric arguments 

and the values are determined by replacing sum and * by any and .and.. 
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Practical Exercise 3 
 
Question 1: Rank, Bounds etc. 
Give the rank, bounds, shape and size of the arrays defined as follows: 
 
REAL, DIMENSION(1:10) :: ONE 
REAL, DIMENSION(2,0:2) :: TWO 
INTEGER, DIMENSION(-1:1,3,2) :: THREE 
REAL, DIMENSION(0:1,3) :: FOUR 
 
Write down the array element order of each array. 
 
Which two of the arrays are conformable? 
 
 
Question 2: Array Sections 
Declare an array which would be suitable for representing a chess board.  Write a 
program to set all the white squares to zero and the black squares to one.  (A chess 
board is 8 × 8 with alternate black and white squares.)  Use formatted output to 
display your chess board on the screen. 
 
 
Question 3: Array Constructor 
Euler noted that a sequence of 40 prime numbers p starting at 41 can be found from 
the formula: 
 

p = 41 + x + x2, for 0 ≤ x ≤ 39 
 
Write a program using an array constructor to store this sequence of 40 primes in an 
array, putting the first prime in element 0 or 1.  Use formatted write to output the 
sequence on your screen, with at most 5 primes on each row. 
 
 
 
Question 4: Fibonacci Numbers 
The Fibonacci numbers are defined as follows: 
 

u0 = 0;   u1 =1;   un=un-2 + un-1   for  n ≥ 2 
 
Write a program to generate and store in an array the Fibonacci numbers up to and 
including u24. 
 
The sum of the first n numbers is un+2 – 1.  Use the intrinsic function SUM on an 
array section to find the sum of the numbers u0 to u22.  Compare this result with the 
value of u24 – 1. 
 
The sum of the first n numbers with odd indices is: 

u1 + u3 + u5 + …+ u2n-1 = u2n. 
Use the intrinsic function SUM on an array section to find the sum of the numbers with 
odd indices up to u23.  Compare this result with the value of u24. 
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The sum of the first n numbers with even indices is: 
u2 + u4 + u6 + …+ u2n = u2n+1 - 1. 

Use the intrinsic function SUM on an array section to find the sum of the numbers with 
even indices up to u22.  Compare this result with the value of u23 - 1. 
 
 
Question 5: Magic Squares 
A magic square is a set of numbers arranged in a square array so that the sum of the 
numbers in each row, the sum of the numbers in each column and the sum of the 
numbers along each diagonal are all equal.  This sum is known as the magic number 
of this particular magic square. 
Write a program to create two 3 x 3 arrays holding these magic squares: 
 

4 9 2  9 2 7 
3 5 7  4 6 8 
8 1 6  5 10 3 

 
 For each magic square write a line of text as a heading and then the magic square. 
 Add the two magic squares together and save the result in a third array: write a 

heading and then this magic square. 
 Check that this is a new magic square by comparing the sums across the first row, 

down the last column and along the leading diagonal. 
 
 
Question 6: Symmetry 
Write a program to work with the first magic square of Question 5. 
 Write the square’s magic number (the row, column or diagonal sum).  You can 

check your answer because for an n x n magic square consisting of any 
arrangement of the integers 1 to n2 the formula is (n3 + n)/2 

 Use the intrinsic function TRANSPOSE to save the transpose of the magic square 
in a new 3 x 3 array. 

 Add the magic square to its transpose and save the result in a new array: this 
should be a symmetric matrix.  Check that the bottom left and top right elements 
are equal: write out the symmetric matrix. 

 
 
Question 7: More Magic 
Modify the Mathematical Magic program which you wrote for Exercise 2, Question 6 
to save the sequences generated in an array.  Write out each sequence and find the 
largest value in each of these sequences and the position in the sequence at which it 
occurs. 
 
 
Question 8: MATMUL Intrinsic 
For the declarations 
REAL, DIMENSION(8,8) :: A, B, C 
what is the difference between C=MATMUL(A,B) and C=A*B? 
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Question 9: More Filed values 
Modify the Filed values program which you wrote for Exercise 1, Question 5 to 
declare an allocatable rank one array of type real.  Use the integer value which is read 
in from the file statsa as the upper bound for the array when it is allocated (and 
make the lower bound 1).  Then fill the array with real values read from the file.  (All 
values are in fields of width 5 with two digits after the decimal point.)  Write out these 
real values, with 5 on each line.  Deallocate the array. 
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4. Procedures 

Program Units 
Fortran 95 has two main program units: 
 
 main PROGRAM is the place where execution begins and where control should 

eventually return before the program terminates.  It may contain procedures. 
 
 MODULE is a program unit, which can contain procedures and declarations.  It is 

intended to be used by another program unit where the entities defined within it 
become accessible. 

 
There are two types of procedures: 
 
 FUNCTION is a parameterised named sequence of code which returns a result in 

the function name (of any specified type and kind). 
 SUBROUTINE is a parameterised named sequence of code which performs one 

or more specific tasks and can be invoked from within other program units. 
 

Introduction to Procedures 
The first question should be: "Do we really need to write a procedure?"  Functionality 
often exists.  For instance look first at: 
 
 intrinsics, Fortran 95 has 121; 
 libraries, for example, NAG fl90  Numerical Library has 300+, BLAS, IMSL, 

LaPACK.  Library routines are usually very fast, sometimes faster than Intrinsics. 
 modules, number growing, many free!  See WWW. 

Intrinsic Procedures 
Fortran 95 has 121 in-built or intrinsic procedures to perform common tasks 
efficiently.  They belong to a number of classes: 
 
 elemental such as: 

mathematical, for example, SIN or LOG; 
numeric, for example, MAX or CEILING; 
character, for example, INDEX or ADJUSTL; 

 bit, for example, IAND or IOR; 
 inquiry, for example, ALLOCATED or SIZE; 
 transformational, for example, RESHAPE or SUM; 
 miscellaneous (non-elemental SUBROUTINEs), for example, SYSTEM_CLOCK 

and DATE_AND_TIME. 
 
Note, all intrinsics which take REAL valued arguments also accept all KIND of 
REAL arguments. 
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Intrinsic statement 
The names of any intrinsic procedures used in any scoping unit may be specified in an 
intrinsic statement, which has the form: 
INTRINSIC :: < intrinsic-name-list > 
A name must not appear more than once in an intrinsic statement, and must not 
appear in an external statement.  It is good programming practice to include a 
statement in every program unit that contains references to intrinsic procedures in 
order to help the reader.  Also, if any intrinsic procedures which are not defined by the 
standard are referenced and the program is ported to a system which does not support 
these additional intrinsic procedures then a diagnostic message should be produced. 
 

Mathematical Intrinsic Function Summary 
 
ACOS(x) arccosine 
ASIN(x) arcsine 
ATAN(x) arctangent 
ATAN2(y,x) arctangent of complex number (x, y) 
COS(x) cosine where x is in radians 
COSH(x) hyperbolic cosine where x is in radians 
EXP(x) e raised to the power x 
LOG(x) natural logarithm of x 
LOG10(x) logarithm base 10 of x 
SIN(x) sine where x is in radians 
SINH(x) hyperbolic sine where x is in radians 
SQRT(x) the square root of x 
TAN(x) tangent where x is in radians 
TANH(x) hyperbolic tangent where x is in radians 
 
As an example consider the following: 
 
PROGRAM Intrins_Maths 
! Uses intrinsic mathematical functions in an assignment and in an expression 

IMPLICIT NONE 
 INTRINSIC :: cos, sin, tan 

REAL :: tan_theta, theta = 0.7854 
tan_theta = tan(theta)   ! assignment 
WRITE(*,”(A12,F6.3)”) & 

“tan(theta) =”, tan_theta 
WRITE(*,”(A,F6.3)”) “ss + cc =”, & 

sin(theta)**2 + cos(theta)**2 ! expression 
END PROGRAM Intrins_Maths 
 
will produce the output: 
 
tan(theta) = 1.000 
ss + cc = 1.000 
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Numeric Intrinsic Function Summary 
 
ABS(a) absolute value 
AIMAG(z) imaginary part of complex value z 
AINT(a) truncates a to whole REAL number 
ANINT(a) nearest whole REAL number 
CEILING(a) smallest INTEGER greater than or equal to REAL number 
CMPLX(x,y) convert to COMPLEX 
CONJG(z) conjugate of complex value z 
DIM(x,y) positive difference 
FLOOR(a) biggest INTEGER less than or equal to REAL number 
INT(a) truncates a into an INTEGER 
MAX(a1,a2,a3,...) the maximum value of the arguments 
MIN(a1,a2,a3,...) the minimum value of the arguments 
MOD(a,p) remainder function 
MODULO(a,p) modulo function 
NINT(x) nearest INTEGER to a REAL number 
REAL(a) converts to the equivalent REAL value 
SIGN(a,b) absolute value of a times the sign of b 
 
 
As an example consider the following: 
 
PROGRAM Intrins_Numeric 
! Uses intrinsic numeric functions in an assignment and in an expression 

IMPLICIT NONE 
INTRINSIC :: aimag, int, nint, real 
INTEGER :: ihi, ilo, j = 3 
REAL :: r = 3.69, s, x, y 
COMPLEX :: val = (1.0,1.732) 

x = real(val) ! real part of val 
y = aimag(val) ! imaginary part of val 
s = real(j) ! type conversion 
ilo = int(r) ! truncation 
ihi = nint(r) ! nearest integer 
WRITE(*,”(A23,F5.2,A4,I2,A4,I2)”) & 

“integers either side of”, r, “ are”, & 
ilo, “ and”, ihi 

END PROGRAM Intrins_Numeric 
 
will produce the output: 
 
integers either side of 3.69 are 3 and 4 
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Character Intrinsic Function Summary 
 
ACHAR(i) ith character in ASCII collating sequence 
ADJUSTL(str) adjust left 
ADJUSTR(str) adjust right 
CHAR(i) ith character in processor collating sequence 
IACHAR(ch) position of character in ASCII collating sequence 
ICHAR(ch) position of character in processor collating sequence 
INDEX(str,substr) starting position of substring 
LEN(str) length of string 
LEN_TRIM(str) length of string without trailing blanks 
LGE(str1,str2) lexically .GE. 
LGT(str1,str2) lexically .GT. 
LLE(str1,str2) lexically .LE. 
LLT(str1,str2) lexically .LT. 
REPEAT(str,i) repeat string i times 
SCAN(str,set) scan a string for characters in a set 
TRIM(str) remove trailing blanks 
VERIFY(str,set) verify the set of characters in a string 
 
 
As an example consider the following: 
 
PROGRAM Intrins_Character 
! Uses intrinsic character functions in an expression 
IMPLICIT NONE 
INTRINSIC :: len, len_trim 
CHARACTER(LEN=9) :: gumboot = ‘Wellie’ 
WRITE(*,”(A18,I2)”) & 
  "gumboot has length", len(gumboot) 
WRITE(*,”(A9,A11,I2)”) & 
  trim(gumboot), " has length", len_trim(gumboot) 
END PROGRAM Intrins_Character 
 
will produce the output: 

 
gumboot has length 9 
   Wellie has length 6 
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Main Program Syntax 
If there is no intrinsic function nor library procedure which meets your need then you 
will have to write your own.  The formal structure of the code will have this structure: 
 

PROGRAM Main 
! ... 
CONTAINS ! Internal Procs 
 SUBROUTINE Sub1(..)  
 ! Executable stmts  
 END SUBROUTINE Sub1  
 ! etc.  
 FUNCTION Funkyn(...)  
 ! Executable stmts  
 END FUNCTION Funkyn  
END PROGRAM Main 

[ PROGRAM [ < main program name > ] ] 
< declaration of local objects > 
. . . 
< executable statements > 
. . . 
[ CONTAINS 
< internal procedure definitions > ] 
END [ PROGRAM [< main program name > ] ] 

Functions 
Consider the following example: 
 
PROGRAM Thingy 

IMPLICIT NONE 
REAL :: a, b, c 
..... 
WRITE(*,"(F7.3)") theta(a,b,c) 
..... 

CONTAINS 
REAL FUNCTION theta(x,y,z) 
! return the angle between sides x and y 

INTRINSIC :: acos, max 
REAL :: x, y, z 
!  check that sides do make a triangle 
IF (2*MAX(x,y,z) < (x+y+z)) THEN 

theta = ACOS((x**2+y**2-z**2)/(2.0*x*y)) 
ELSE  !  sides do not make a triangle 

theta = 0.0 
END IF 

END FUNCTION theta 
END PROGRAM Thingy 
 
Internal functions lie between the CONTAINS and END PROGRAM statements. 
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Functions have the following syntax: 
 

[< prefix >] FUNCTION < procname > ( [< dummyargs >]) 
< declaration of dummy args > 
< declaration of local objects > 

. . . 

< executable stmts, assignment of result > 
END [ FUNCTION [< procname > ] ] 
 
A function returns its result through its name, and is usually used in an expression. 
The function type could be declared in the declarations area instead of in the header: 
the example of function theta given above could have been started thus: 

FUNCTION theta(x,y,z) 
! return the angle between sides x and y 

INTRINSIC :: acos, max 
REAL :: theta, x, y, z 

 
It is possible to define a function that has an empty argument list (although this may 
not be particularly useful).  In this case the parentheses are required in both the 
function statement and in every invocation of this function. 

Subroutine or Function? 
It is permissible to write a function which does more than calculate its result but if it 
also performs action such as altering the values of arguments, input or output 
operations these side-effects adversely affect optimization particularly on parallel 
processors.  Some side-effects in procedures to be aware of include: 

• if a function, it does not alter the value of any dummy argument: effectively 
each dummy argument could have intent IN: the name of the function behaves 
like a dummy argument which is initially undefined and has intent OUT; 

• it does not alter any variable accessed by host or use association; 
• it does not contain any local variable with the attribute SAVE; 
• it does not perform any operation on an external file; 
• it does not contain a STOP statement. 

 
If it is necessary for a procedure to include any side-effect then a subroutine should be 
written instead of a function. 

Subroutines 
Consider the following example: 
 
PROGRAM Thingy 

IMPLICIT NONE 
REAL.DIMENSION(1:5) :: NumberSet = (/1,2,3,4,5/) 
..... 

CALL OutputFigures(NumberSet) 
..... 

CONTAINS 
SUBROUTINE OutputFigures(Numbers) 
REAL, DIMENSION(:) :: Numbers 
WRITE(*,”(A,(/5F12.4))”) "Here are the figures", Numbers 
END SUBROUTINE OutputFigures 
END PROGRAM Thingy 
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Internal subroutines also lie between the CONTAINS and END PROGRAM statements 
and have the following syntax: 
 

SUBROUTINE < procname >[ (< dummy args >) ] 
< declaration of dummy args > 
< declaration of local objects > 

. . . 
< executable stmts > 

END [ SUBROUTINE [< procname > ] ] 
 
Note that, in the example, the IMPLICIT NONE statement applies to the whole 
program including the SUBROUTINE. 

Argument Association 
Recall, with the SUBROUTINE we had an invocation: 
 
CALL OutputFigures(NumberSet) 
 
and a declaration: 
 
SUBROUTINE OutputFigures(Numbers) 
where NumberSet is an actual argument and is argument associated with the 
dummy argument Numbers.  The actual argument must agree in type with the 
dummy argument. 
 
For the above call, in OutputFigures, the name Numbers is an alias for 
NumberSet.  Likewise, consider the two statements: 
 

WRITE(*,"(F7.3)") theta(a,b,c) 
 

REAL FUNCTION theta(x,y,z) 
The actual arguments a, b and c are associated with the dummy arguments x, y and 
z.  If the value of a dummy argument changes and the actual argument is a variable 
then so does the value of this variable. 

Argument Intent 
Information to the compiler can be given as to whether a dummy argument will: 
 
 only be referenced   -- INTENT(IN); 
 be assigned to before use  -- INTENT(OUT); 
 be referenced and assigned to -- INTENT(INOUT). 
 

SUBROUTINE example(a,b,c) 
INTRINSIC :: mod, nint 
REAL, INTENT(IN) :: a 
INTEGER, INTENT(OUT) :: b 
INTEGER, INTENT(INOUT) :: c 
b = NINT(a)  ! return nearest integer to a 
c = MOD(c,2)  ! replace c by its remainder 

END SUBROUTINE example 
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The use of INTENT attributes is optional but recommended as it allows good 
compilers to check for coding errors, and facilitates efficient compilation and 
optimisation. 
 
Note: if an actual argument is ever a literal, then the corresponding dummy argument 
must have the attribute INTENT(IN). 
 
If the intent of a dummy argument is OUT or INOUT then the corresponding actual 
argument must be a variable. 
 
If a procedure changes the value of an argument then it is better for this procedure to 
be a subroutine rather than a function. 

Local Objects 
In the following procedure 
 

SUBROUTINE Madras(i,j) 
INTEGER, INTENT(IN) :: i, j 
REAL                :: a 
REAL, DIMENSION(i,j):: x 

 
a and x are known as local objects.  They: 
 
 are created each time the procedure is invoked; 
 are destroyed when the procedure completes; 
 do not retain their values between calls; 
 do not exist in the program’s memory between calls. 
 
x could have a different size and shape on each call. 

SAVE Attribute 
The SAVE attribute can be applied to a specified local variable in a procedure so that 
it and its value are not lost on return from the procedure.  In the following example 
NumInvocations is initialised on first call and retains its new value between calls: 
 

SUBROUTINE Barmy(arg1,arg2) 
REAL, INTENT(IN)  :: arg1 
REAL, INTENT(OUT) :: arg2 
INTEGER, SAVE :: NumInvocations = 0 
NumInvocations = NumInvocations + 1 

 
 
Variables with the SAVE attribute are static objects.  Clearly, SAVE has no meaning 
in the main program. 
 
Strictly the SAVE attribute in this example is not necessary because all variables with 
initial values acquire the SAVE attribute automatically. 
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Scoping Rules 
Fortran 95 is not a traditional block-structured language: 
 
 the scope of an entity is the range of program unit where it is visible and 

accessible; 
 internal procedures can inherit entities by host association; 
 objects declared in modules can be made visible by use association (the USE 

statement, explained in the next chapter): useful for global data. 
 

Host Association -- Global Data 
Consider: 
 
PROGRAM CalculatePay 

IMPLICIT NONE 
REAL  :: GrossPay, TaxRate, Delta 
INTEGER :: NumberCalcsDone = 0 
GrossPay = ...; TaxRate = ... ; Delta = ... 
CALL PrintPay(GrossPay,TaxRate) 
TaxRate = NewTax(TaxRate,Delta) 
WRITE(*,"(a29,i2)") & 
"Number of calculations done =", NumberCalcsDone 

CONTAINS 
SUBROUTINE PrintPay(Pay,Tax) 

REAL, INTENT(IN) :: Pay, Tax 
REAL :: TaxPaid 
TaxPaid = Pay * Tax 
WRITE(*,"(F8.3)") Pay - TaxPaid 
NumberCalcsDone = NumberCalcsDone + 1 

END SUBROUTINE PrintPay 
REAL FUNCTION NewTax(Tax,Delta) 

REAL, INTENT(IN) :: Tax, Delta 
NewTax = Tax + Delta*Tax 
NumberCalcsDone = NumberCalcsDone + 1 

END FUNCTION NewTax 
END PROGRAM CalculatePay 
 
NumberCalcsDone is a global variable and available in all procedures in this 
program by host association. 
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Scope of Names 
Consider the following example: 
 
PROGRAM Proggie 

IMPLICIT NONE 
REAL :: A=1.0, B, C 
CALL sub(A) 

CONTAINS 
SUBROUTINE Sub(D) 

REAL :: D ! D is dummy (alias for A) 
REAL :: C ! local C (diff from Proggie's C) 
C = A**3 ! A cannot be changed 
D = D**3 + C ! D can be changed 
B = C ! B from Proggie gets new value 

END SUBROUTINE Sub 
END PROGRAM Proggie 
 
In Sub, as A is argument associated it may not have its value changed but it may be 
referenced. 
C in Sub is totally separate from C in Proggie, changing its value in Sub does not 
change the value of C in Proggie. 

Dummy Array Arguments 
There are two main types of dummy array argument: 
 
 explicit-shape -- all bounds specified; 

REAL, DIMENSION(8,8), INTENT(IN) :: give_shape 
 

The actual argument that becomes associated with an explicit-shape dummy must 
conform in type, size and shape. 

 
 assumed-shape -- no bounds specified, all inherited from the actual argument; 

REAL, DIMENSION(:,:), INTENT(IN) :: adopt_shape 
 

The actual argument that becomes associated with an assumed-shape dummy must 
conform in type and rank.  For each procedure the compiler will need to know its 
interface, that is whether the procedure is a function or a subroutine, the names 
and properties of the dummy arguments and the properties of the result if it is a 
function.  This interface is explicit for an internal procedure or a procedure in a 
module (see next chapter): otherwise an interface block must be provided. 

 
 dummy arguments cannot be (unallocated) ALLOCATABLE arrays. 
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Assumed-shape Arrays 
Dummy arrays may be declared as assumed-shape arrays: 
 
PROGRAM Main 

IMPLICIT NONE 
REAL, DIMENSION(40)  :: X 
REAL, DIMENSION(40,40) :: Y, Z 
... 
CALL gimlet(X,Y) 
CALL gimlet(X(1:39:2),Y(2:4,4:4)) 
CALL gimlet(Y(1:39:2,1),Z(2:40:2,2:40:2)) 

CONTAINS 
SUBROUTINE gimlet(a,b) 

REAL, INTENT(IN) :: a(:), b(:,:) 
... 

END SUBROUTINE gimlet 
END PROGRAM 
 
Note: 

• the actual argument cannot be a vector subscripted array; for example it cannot 
be X(/ (i=1:39:2) /) 

• in the procedure, bounds begin at 1. 
 

External Functions 
In an earlier example we had a program with an internal function: 
 
PROGRAM Main 

IMPLICIT NONE 
REAL :: x 

READ(*,*) x 
WRITE(*,”(F12.4)”) Negative(x) 

  ... 
CONTAINS 

REAL FUNCTION Negative(a) 
REAL, INTENT(IN) :: a 
Negative = -a 

END FUNCTION Negative 
END PROGRAM Main 
 
Sometimes a function is defined outside the body of the program unit which uses it, ie 
it is external to that unit.  For example: 
 
PROGRAM Main 

IMPLICIT NONE 
REAL :: x 

READ(*,*) x 
WRITE(*,”(F12.4)”) Negative(x) 

  ... 
END PROGRAM Main 
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REAL FUNCTION Negative(a) 
REAL, INTENT(IN) :: a 
Negative = -a 

END FUNCTION Negative 
 
So that the compiler may know about this object it is necessary to give both its type 
and the fact that it is external in the specification part of the program.  There are two 
ways of doing this: 
 
PROGRAM Main 
 IMPLICIT NONE 
 REAL :: x, Negative ! specify type REAL 
 EXTERNAL :: Negative ! use EXTERNAL statement 
  READ(*,*) x 
  ... 
 
Or alternatively: 
 
PROGRAM Main 
 IMPLICIT NONE 
 REAL :: x 
 REAL, EXTERNAL :: Negative ! specify type REAL and use 

   ! EXTERNAL attribute 
  READ(*,*) x 
  ... 
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Practical Exercise 4 
 
Question 1: Point on a circle 
Write a program to read in a vector defined by a length, r, and an angle, θ, in degrees 
which writes out the corresponding (x, y) co-ordinates.  Recall that arguments to 
trigonometric functions are in radians. 
 
Demonstrate correctness by finding the (x, y) co-ordinates for the following vectors: 
 
1. r = 2, θ = 60° 
2. r = 3, θ = 120° 
3. r = 5, θ = 240° 
4. r = 8, θ = 300° 
5. r = 13, θ = 450° 
 
 
 
 
 
 
 
 
 

Hint: remember that 
r
y

=θsin      and    
r
x

=θcos      and    180 degrees = π radians 

 
 
Question 2: Simple example of a Subroutine 
Write a main program and an internal subroutine that returns, as its first argument, the 
sum of two real numbers. 
 
 
Question 3: Simple example of a Function 
Write a main program and an internal function that returns the sum of two real 
numbers supplied as arguments. 
 
 
Question 4: Switch or Stick 
Write a main program and an internal subroutine with two arguments that returns, as 
its first argument, the smaller of two real numbers and as its second argument, the 
other number. 
 
 
Question 5: Standard Deviation 
Write a program which contains an internal function that returns the standard 
deviation from the mean of an array of real values.  Note that if the mean of a 
sequence of values (xi , i = 1, n) is denoted by m then the standard deviation, s, is 
defined as: 

r (x,y) θ 
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[Hint: In Fortran 95 SUM(X) is the sum of the elements of X.] 
To demonstrate correctness write out the standard deviation of the following numbers 
(10 of them): 

5.0 3.0 17.0 -7.56 78.1 99.99 0.8 11.7 33.8 29.6 
and also the following 14: 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 
 
The files statsa and statsb contain these two sets of real values preceded by the 
relevant count (see Exercise 3, Question 9). 
 
 
Question 6: Save Attribute 
Write a skeleton procedure that records how many times it has been called. 
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5. Modules and Derived Types 

Plane Geometry Program 
The following program defines a simple 3 sided shape and contains two internal 
functions: 
 
PROGRAM Triangle 

IMPLICIT NONE 
REAL :: a, b, c 
REAL, PARAMETER :: pi = 3.14159 

 
WRITE(*,"(a)") 'Welcome, please enter the & 
&lengths of the 3 sides.' 
READ(*,*) a, b, c 
WRITE(*,"(a16,f5.1)") & 
'Triangle''s area:', Area(a,b,c) 

 
CONTAINS 
 
FUNCTION theta(x,y,z) 

! return the angle between sides x and y 
REAL :: theta              ! function type 
REAL, INTENT(IN) :: x, y, z 
INTRINSIC :: acos, max 
! check that sides do make a triangle 
IF (2*MAX(x,y,z) < (x+y+z)) THEN 

theta = ACOS((x**2+y**2-z**2)/(2.0*x*y)) 
ELSE           ! sides do not make a triangle 

theta = 0.0 
END IF 

END FUNCTION theta 
 
FUNCTION Area(x,y,z) 

REAL :: Area               ! function type 
REAL, INTENT(IN) :: x, y, z 
REAL :: height 
INTRINSIC :: sin 
height = x*SIN(theta(x,y,z)) 
Area = 0.5*y*height 

END FUNCTION Area 
 
END PROGRAM Triangle 
 
 
The main program has access to Area which uses 3 REAL values. 
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Reusability – Modules 
To allow the constant pi and the functions Theta and Area to be used elsewhere they 
should be contained in a MODULE.  This is called encapsulation. 
 
The general form of a module is: 
 

MODULE Nodule 
 ! TYPE Definitions  
 ! Global data  
 ! etc ..  
CONTAINS 
  SUBROUTINE Sub(..)   
   ! Executable stmts   
  CONTAINS   
   SUBROUTINE Int1(..)    
    ! Executable stmts     
   END SUBROUTINE Int1    
    ! etc.     
   SUBROUTINE Intn(..)    
    ! Executable stmts     
   END SUBROUTINE Intn    
  END SUBROUTINE Sub   
   ! etc.    
  FUNCTION Funky(..)   
   ! Executable stmts    
  CONTAINS   
       
   ! etc    
       
  END FUNCTION Funky   
END MODULE Nodule 

 
 
MODULE < module name > 

< declarations and specifications statements > 
[ CONTAINS 

< definitions of module procedures > ] 
END [ MODULE [< module name > ] ] 
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The MODULE program unit provides the following facilities: 
 
 global object declaration; 
 procedure declaration (including operator definition); 
 semantic extension; 
 ability to control accessibility of above to different programs and program units; 
 ability to package together whole sets of facilities. 
 
Here is some of the code taken from the previous program example and encapsulated 
in a module: 
 
MODULE Triangle_Operations 

IMPLICIT NONE 
REAL, PARAMETER :: pi = 3.14159 

CONTAINS 
FUNCTION theta(x,y,z) 

! return the angle between sides x and y 
REAL :: theta              ! function type 
REAL, INTENT(IN) :: x, y, z 
INTRINSIC :: acos, max 
! check that sides do make a triangle 
IF (2*MAX(x,y,z) < (x+y+z)) THEN 

theta = ACOS((x**2+y**2-z**2)/(2.0*x*y)) 
ELSE           ! sides do not make a triangle 

theta = 0.0 
END IF 

END FUNCTION theta 
 
FUNCTION Area(x,y,z) 

REAL :: Area               ! function type 
REAL, INTENT( IN ) :: x, y, z 
REAL :: height 
INTRINSIC :: sin 

height = x*SIN(theta(x,y,z)) 
Area = 0.5*y*height 

END FUNCTION Area 
 
END MODULE Triangle_Operations 
 
 
Other programs can now access Triangle_Operations.  The USE statement 
attaches it to a program, and must precede any specification statements: 
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PROGRAM TriangUser 
USE Triangle_Operations 
IMPLICIT NONE 
REAL :: a, b, c, angle_rad, angle_deg 
 
WRITE(*,"(a)") 'Welcome, please enter the & 
&lengths of the 3 sides.' 
READ(*,*) a, b, c 
WRITE(*,"(a16,f5.1)") & 
'Triangle''s area:', Area(a,b,c) 
angle_rad = theta(a,b,c) 
angle_deg = angle_rad*180.0/pi 
WRITE(*,”(a,f6.2,a,f6.2,a)”) “Angle is”, & 
angle_rad, “ radians or”, angle_deg, “ degrees” 
 

END PROGRAM TriangUser 
 

It is as if the code had been included in TriangUser. 
 
Points raised: 
 
 within a module, functions and subroutines are called module procedures; 
 module procedures may contain internal procedures (like PROGRAMs); 
 module objects which need to retain their values should be given the SAVE 

attribute; 
 modules can also be USEd by procedures and other modules; 
 modules can be compiled separately.  They must be compiled before the program 

unit that uses them. 

Restricting Visibility 
If a main program uses a module it has access to all the entities in that module: it is as 
though each entity has the attribute public.  You can restrict the visibility of entities 
by setting the attribute private: 
 

PRIVATE :: theta ! restricted visibility 
 
This allows theta to be used within the module and for there to be a distinct object 
named theta defined outside this module which could be used in the program.  You 
could use statements or attributes: 
 

PUBLIC ! confirm default visibility 
PRIVATE :: theta ! restrict visibility 
REAL, PRIVATE :: height ! restrict visibility 

 
or alternatively 
 

PRIVATE ! set restricted visibility 
REAL, PUBLIC :: pi, Area ! unrestricted visibility 

 
so, in the main PROGRAM: 
 

abc = Area(3,4,5) ! OK 
height = 2.9 ! Forbidden 
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The USE Renames Facility 
The USE statement names a module whose public definitions are to be made 
accessible.  The syntax is: 
 

USE < module-name > & 
[,< new-name > => < use-name >...] 

Module entities can be renamed, possibly to avoid ambiguity between a local object 
and an object from a module or between objects from more than one module: 
 

USE Triangle_Operations, Space => Area 
 
The module object Area is renamed to Space when used locally. 

USE ONLY Statement 
Another way to avoid name clashes is to use only those objects which are necessary.  
It has the following form: 
 
USE < module-name > [, ONLY: < only-list >...] 
 
The < only-list > can also contain renames (=>).  For example: 
 

USE Triangle_Operations, ONLY : pi, Space => Area 
 
Only pi and Area are made accessible:  Area is renamed to Space. 
 
The ONLY option limits the entities made available to only those specifically named. 

Derived Types 
It is often advantageous to express some objects in terms of aggregate structures, for 
example: coordinates, (x, y, z).  Fortran 95 allows compound entities or derived types 
to be defined: 
 

TYPE COORDS_3D 
REAL :: x, y, z 

END TYPE COORDS_3D 
TYPE(COORDS_3D) :: pt1, pt2 

 
Derived types definitions should be placed in a MODULE. 
 
Previously defined types can be used as components of other derived types.  These are 
sometimes known as supertypes: 
 

TYPE SPHERE 
TYPE (COORDS_3D) :: centre 
REAL :: radius 

END TYPE SPHERE 
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Objects of type SPHERE can be declared: 
 

TYPE (SPHERE) :: bubble, ball 
 
Values can be assigned to derived types either component by component or as an 
object. 
 
An individual component may be selected by using the % operator: 
 

pt1%x = 1.0 
bubble%radius = 3.0 
bubble%centre%x = 1.0 

 
The whole object may be selected and assigned to by using a constructor: 
 

pt1 = COORDS_3D(1.,2.,3.) 
bubble%centre = COORDS_3D(1.,2.,3.) 
bubble = SPHERE(bubble%centre,10.) 
bubble = SPHERE(COORDS_3D(1.,2.,3.),10.) 

 
The derived type component of SPHERE must also be assigned to by using a 
constructor.  Note however, that assignment between two objects of the same derived 
type is intrinsically defined: 
 

ball = bubble 
 
Derived type objects, which do not contain pointers (or private) components, may be 
input or output using normal methods: 
 

WRITE(*,"(4F8.3)") bubble 
 
is exactly equivalent to: 
 

WRITE(*,"(4F8.3)") bubble%centre%x, & 
bubble%centre%y, bubble%centre%z, & 
bubble%radius 

 
Derived types are handled on a component by component basis.  Their definitions 
should be packaged in a MODULE. 
 

MODULE VecDef 
TYPE vec 

REAL :: r 
REAL :: theta 

END TYPE vec 
END MODULE VecDef 

 
To make the type definitions visible, the module must be used: 
 



 75 

PROGRAM Up 
USE VecDef 
IMPLICIT NONE 
TYPE(vec) :: north 
CALL subby(north) 
... 

CONTAINS 
SUBROUTINE subby(arg) 

TYPE(vec), INTENT(IN) :: arg 
... 

END SUBROUTINE subby 
END PROGRAM Up 

 
Type definitions can only become accessible by host or use association. 

Functions can return results of an arbitrary defined type 
FUNCTION Poo(kanga, roo) 

USE VecDef 
TYPE (vec) :: Poo 
TYPE (vec), INTENT(IN) :: kanga, roo 
Poo =... 

END FUNCTION Poo 
 
Recall that the definitions of VecDef must be made available by use or host 
association. 

True Portability 
The range and precision of the values of numeric intrinsic types are not defined in the 
language but are dependent upon the system used for the program.  There are intrinsic 
integer functions for investigating these: 
 

INTEGER :: I, PR, RI, RR 
REAL :: X 
RI = RANGE(I) 
RR = RANGE(X); PR = PRECISION(X) 

 
If RI has the value 9 this means that any integer n 
in the range  -999999999 ≤ n ≤ 999999999  can be handled by the program. 
 
If RR has the value 37 and PR has the value 6 this means that any real value in the 
range 10-37 to 1037  can be handled in the program with a precision of 6 decimal 
digits.  As values of type complex consist of ordered pairs of values of type real, 
similar values would be returned by the inquiry functions if their arguments were of 
type complex instead of type real. 
 
Intrinsic types can be parameterised by the KIND value to select the accuracy and 
range of the representation. 
For type integer the function SELECTED_INT_KIND with a single argument of type 
integer giving the desired range will return the appropriate KIND value. 
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INTEGER, PARAMETER :: ik9 = SELECTED_INT_KIND(9) 
INTEGER(KIND=ik9) :: I 

 
If the given range can be supported, then the KIND value will be non-negative: a 
value of -1 indicates that the range is not supported. 
 
For type real the function SELECTED_REAL_KIND with two arguments of type 
integer giving the desired precision and range will return the appropriate KIND value. 
 

INTEGER, PARAMETER :: rk637 = SELECTED_REAL_KIND(6,37) 
REAL(KIND=rk637) :: X 

 
If the given precision and range can be supported, then the KIND value will be non-
negative.  A value of -1 indicates that insufficient precision is available, a value of   
-2 indicates that insufficient exponent range is available, and -3 indicates that 
neither is attainable. 
 
Constants should have their KIND value attached: 
 

INTEGER(KIND=ik9)  :: I=1_ik9 
REAL(KIND=rk637)  :: X=2.0_rk637 
COMPLEX(KIND=rk637) :: C=(3.0_rk637,4.0_rk637) 
I = I + 5_ik9 
X = X + 6.0_rk637 
C = C + (7.0_rk637,8.0_rk637) 

 
You should make KIND value constants global by defining them in a module. 
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Practical Exercise 5 
 
Question 1: Encapsulation 
Define a module called Simple_Stats which contains encapsulated functions for 
calculating the mean and standard deviation of an arbitrary length REAL vector.  The 
functions should have the following interfaces: 
 

REAL FUNCTION mean(vec) 
REAL, INTENT(IN), DIMENSION(:) :: vec 

END FUNCTION mean 
 

REAL FUNCTION Std_Dev(vec) 
REAL, INTENT(IN), DIMENSION(:) :: vec 

END FUNCTION Std_Dev 
 
[Hint: In Fortran 95, SIZE(X) gives the number of elements in the array X.] 
You may like to utilise your earlier code as a basis for this exercise. 
Add some more code in the module, which records how many times each statistical 
function is called during the lifetime of a program.  Record these numbers in the 
variables: mean_use and std_dev_use. 
Demonstrate the use of this module in a test program; in one execution of the program 
give the mean and standard deviation of the following sequences of 10 numbers: 

5.0  3.0 17.0 -7.56 78.1 99.99 0.8 11.7 33.8 29.6 

and then the following 14: 
1.0  2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 

 
Write out the values of mean_use and std_dev_use for this run of the program. 
 
 
Question 2: Binary Cut 
Write a module containing a function which returns the position of a particular 
number in an array of sorted integers.  The function should employ the so-called 
``binary cut'' method.  This method proceeds by determining in which half the number 
is and then concentrating on that half.  It is easily implemented by using two indices 
to point at the low and high positions of the current area of interest.  It is assumed that 
if there is more than one occurrence of the number then the one with the higher index 
will be chosen.  This method is very efficient for very large arrays. 
 



 78 

Algorithm: 
 Let i and j be the indices (subscripts) to (array) x of the low and high 

            marks. 
 Initially set i = 1 and j = n (the number in the list) 
 Assume k is the number we are trying to find 
 DO 
 IF(i ≥ j)EXIT 

 determine the half way point 
2
jiihalf +

=  

 IF k is above x(ihalf) put i = ihalf + 1 
 Otherwise put j = ihalf 
 END DO 
 j will now point at the number k 

 
 
Question 3: Spheres Apart 
Write a program to look at the relationship between all pairs of an arbitrary number of 
spheres defined in 3-dimensional space.  Read in the number of spheres being used 
and read the coordinates of the centres and the lengths of the radii of these spheres 
into an allocatable array of a defined type variable.  For spheres sm and sn the 
separation of their centres is given by the formula: 
 

( ) ( ) ( )zzyyxx nmnmnm −−− ++
222
 

 
If the centre of one sphere lies within the other then output a line stating this fact.  
Otherwise are the surfaces of the two spheres touching, intersecting or separate?  You 
could try your program on spheres with these centres and radii: 
(3.0,4.0,5.0), 3.0 (10.0,4.0,5.0), 4.0 (3.0,-3.0,5.0), 5.0 (3.0,4.0.8.0), 6.0 
 
 
Question 4: Real Portability 
Take a copy of the program you wrote in Question 3 of Exercise 2 to find the 
Ludolphian number.  Replace the statement of the form: 
 

REAL :: a, b, c, d, e, f 
 
by the statements of the form: 
 
INTEGER, PARAMETER :: k = SELECTED_REAL_KIND(P=15,R=31) 
REAL(KIND=k)       :: a, b, c, d, e, f 
 
Add a statement to check that k > 0, and change the kind of the constants to k, for 
example 1.0_k   Output the results with 12 decimal digits. 
 
Run this program and compare the results with those you got earlier. 
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Question 5: Integer Portability 
Take a copy of the program you wrote in Question 5(a) of Exercise 2 to find the first 5 
terms of a sequence.  Extend the range of those integers necessary to find the 6th term 
of this sequence. 
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