Parallel Programming

Overview and Concepts

Practical

Outline

- Decomposition
 - Geometric decomposition
 - Task farm
 - Pipeline
 - Loop parallelism
- General parallelisation considerations
- Parallel code performance metrics and evaluation
- Parallel scaling models

Why use parallel programming?

It is harder than serial so why bother?

Why?

- Parallel programming is more difficult than it's sequential counterpart
- However we are reaching limitations in uniprocessor design
 - Physical limitations to size and speed of a single chip
 - Developing new processor technology is very expensive
 - Some fundamental limits such as speed of light and size of atoms
- Parallelism is not a silver bullet
 - There are many additional considerations
 - Careful thought is required to take advantage of parallel machines

Performance

- A key aim is to solve problems faster
 - To improve the time to solution
 - Enable new a new scientific problems to be solved
- To exploit parallel computers, we need to split the program up between different processors
- Ideally, would like program to run P times faster on P processors
 - Not all parts of program can be successfully split up
 - Splitting the program up may introduce additional overheads such as communication

Sharpen

Parallel tasks

- How we split a problem up in parallel is critical
 - 1. Limit communication (especially the number of messages)
 - Balance the load so all processors are equally busy
- Tightly coupled problems require lots of interaction between their parallel tasks
- Embarrassingly parallel problems require very little (or no) interaction between their parallel tasks
 - E.g. the image sharpening exercise
- In reality most problems sit somewhere between two extremes

Decomposition

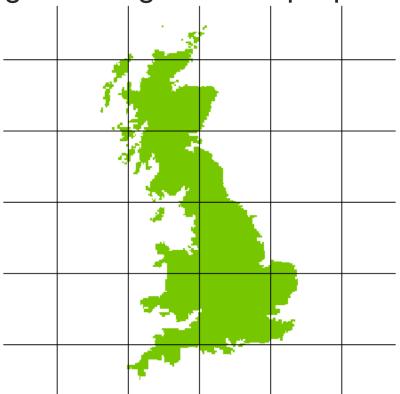
How do we split problems up to solve efficiently in parallel?

Decomposition

- One of the most challenging, but also most important, decisions is how to split the problem up
- How you do this depends upon a number of factors
 - The nature of the problem
 - The amount of communication required
 - Support from implementation technologies
- We are going to look at some frequently used decompositions

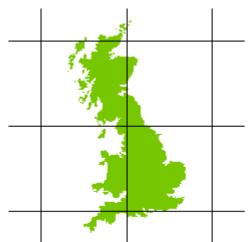
Geometric decomposition

Take advantage of the geometric properties of a problem



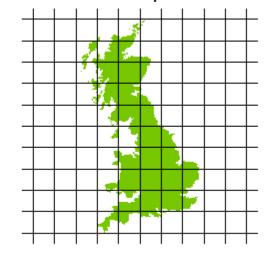
Geometric decomposition

- Splitting the problem up does have an associated cost
 - Namely communication between processors
 - Need to carefully consider granularity
 - Aim to minimise communication and maximise computation



Granularity

Size of chunks of work

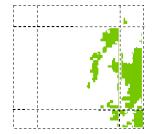


too large: little parallelism

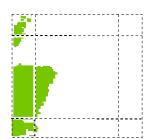
too small: communications rule

Halo swapping

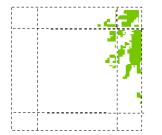
 Swap data in bulk at predefined intervals





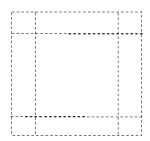


Often only need information on the boundaries



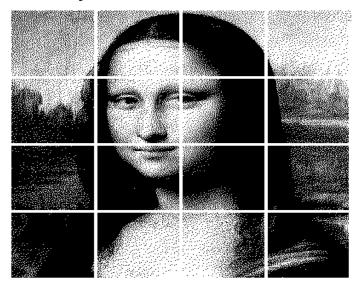


 Many small messages result in far greater overhead



Load imbalance

- Execution time determined by slowest processor
 - each processor should have (roughly) the same amount of work,
 i.e. they should be load balanced



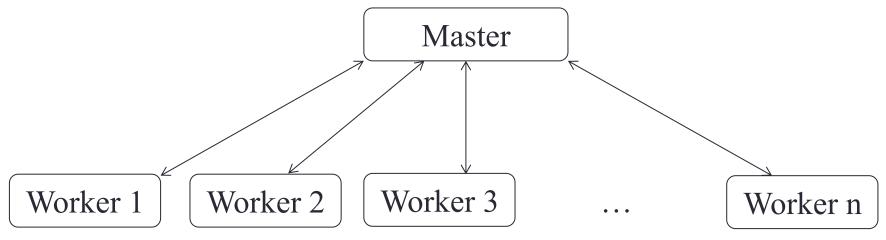


- Address by multiple partitions per processor
 - Additional techniques such as work stealing available

Fractal

Task farm (master worker)

Split the problem up into distinct, independent, tasks



- Master process sends task to a worker
- Worker process sends results back to the master
- The number of tasks is often much greater than the number of workers and tasks get allocated to idle workers

Task farm considerations

- Communication is between the master and the workers
 - Communication between the workers can complicate things
- The master process can become a bottleneck
 - Workers are idle waiting for the master to send them a task or acknowledge receipt of results
 - Potential solution: implement work stealing
- Resilience what happens if a worker stops responding?
 - Master could maintain a list of tasks and redistribute that work's work

MapReduce

Three types of worker – mapper, grouper and reducer

Mapper (user supplies this code)

Take a (local) list of key-value pairs, and the

Take a (local) list of key-value pairs, and for each pair, return another (intermediate) key-value pair

```
function mapper(String name, String document): (hello,1), (test,1), (this,1),

for each word w in document: emit (w, 1)

Grouper (part of runtime)
Groups by intermediate key

function reducer(String word, Iterator partialCounts):

sum = 0

for each pc in partialCounts: sum += ParseInt(pc)

emit (word, sum)

function mapper(String name, String document): (hello,1), (test,1), (hello,1)

grouper

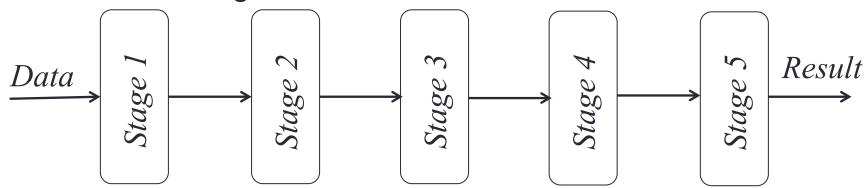
(hello,1), (test,1), (test,1,1), (test,1,1), (this,1), (is,1), (is,1), (a,1)
```

(hello,2), (test,2), (this,1), (is,1), (a,1) Reducer (user supplies this code)

One reducer for each intermediate key. Takes the intermediate key-value pairs, performs a reduction and returns another (usually) shorter list of final key-values.

Pipeline

 A problem involves operating on many pieces of data in turn. The overall calculation can be viewed as data flowing through a sequence of stages and being operated on at each stage.



- Each stage runs on a processor, each processor communicates with the processor holding the next stage
- One way flow of data

Examples of pipeline

- CPU architectures
 - Fetch, decode, execute, write back
 - Intel Pentium 4 had a 20 stage pipeline
- Unix shell
 - i.e. cat datafile | grep "energy" | awk '{print \$2, \$3}'
- Graphics/GPU pipeline
- A generalisation of pipeline (a workflow, or dataflow) is becoming more and more relevant to large, distributed scientific workflows
- Can combine the pipeline with other decompositions

OpenMP Sharpen

Loop parallelism

- Serial programs can often be dominated by computationally intensive loops.
- Can be applied incrementally, in small steps based upon a working code
 - This makes the decomposition very useful
 - Often large restructuring of the code is not required
- Tends to work best with small scale parallelism
 - Not suited to all architectures
 - Not suited to all loops
- If the runtime is not dominated by loops, or some loops can not be parallelised then these factors can dominate (Amdahl's law.)

Example of loop parallelism:

```
int main(int argc, char *argv[]) {
   const int N = 1000000;
   int i, a[N];

   #pragma omp parallel for
   for (i = 0; i < N; i++)
       a[i] = 2 * i;

return 0;
}</pre>
```

- If we ignore all parallelisation directives then should just run in serial
- Technologies have lots of additional support for tuning this

Performance metrics

How is my parallel code performing and scaling?

Performance metrics

- A typical program has two categories of components
 - Inherently sequential sections: can't be run in parallel
 - Potentially parallel sections
- Speed up
 - typically S(N,P) < P
- Parallel efficiency
 - typically E(N,P) < 1
- Serial efficiency
 - typically E(N) <= 1

$$S(N, P) = \frac{T(N, 1)}{T(N, P)}$$

$$E(N,P) = \frac{S(N,P)}{P} = \frac{T(N,1)}{PT(N,P)}$$

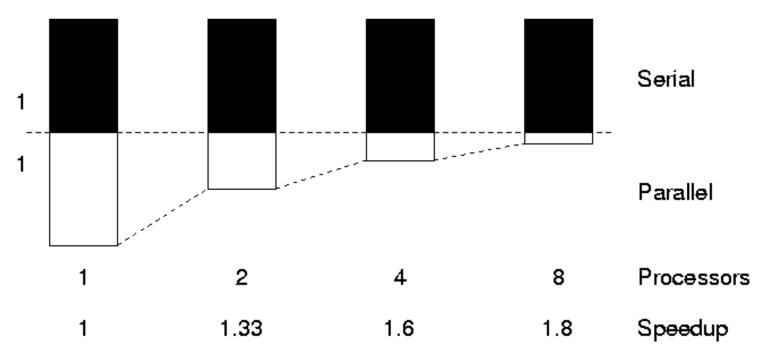
$$E(N) = \frac{T_{best}(N)}{T(N,1)}$$

Where N is the size of the problem and P the number of processors

The serial section of code

"The performance improvement to be gained by parallelisation is limited by the proportion of the code which is serial"

Gene Amdahl, 1967



Sharpen & CFD

Amdahl's law

- A fraction, α , is completely serial
- Parallel runtime

$$T(N, P) = \alpha T(N, 1) + \frac{(1-\alpha)T(N, 1)}{P}$$

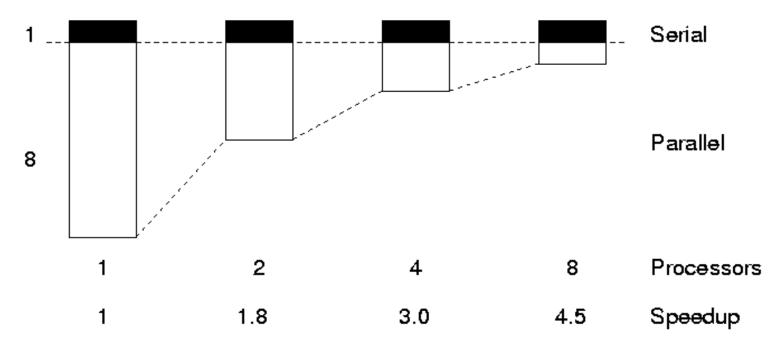
- Assuming parallel part is 100% efficient
- Parallel speedup

$$S(N,P) = \frac{T(N,1)}{T(N,P)} = \frac{P}{\alpha P + (1-\alpha)}$$

- We are fundamentally limited by the serial fraction
 - For $\alpha = 0$, S = P as expected (i.e. *efficiency* = 100%)
 - Otherwise, speedup limited by 1/ α for any P
 - For $\alpha = 0.1$; 1/0.1 = 10 therefore 10 times maximum speed up
 - For $\alpha = 0.1$; S(N, 16) = 6.4, S(N, 1024) = 9.9

Gustafson's Law

We need larger problems for larger numbers of CPUs



 Whilst we are still limited by the serial fraction, it becomes less important

Gustafson's Law

- If you can increase the amount of work done by each process/task then the serial component will not dominate
 - Increase the problem size to maintain scaling
 - This can be in terms of adding extra complexity or increasing the overall problem size.
- $S(N * P, P) = P \propto (P 1)$
- For instance, ∝=0.1
 - S(16*N, 16) = 14.5
 - S(1024*N, 1024) = 921.7

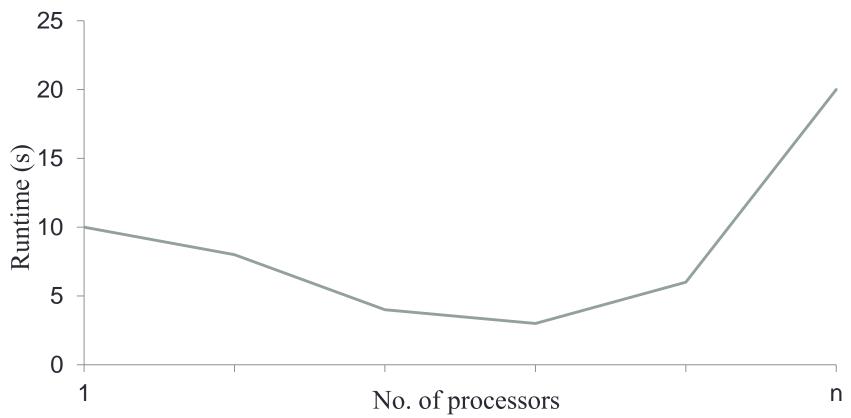
Due to the scaling of N, effectively the serial fraction becomes ∝/P

Scaling

- Scaling is how the performance of a parallel application changes as the number of processors is increased
- There are two different types of scaling:
 - Strong Scaling total problem size stays the same as the number of processors increases
 - Weak Scaling the problem size increases at the same rate as the number of processors, keeping the amount of work per processor the same
- Strong scaling is generally more useful and more difficult to achieve than weak scaling

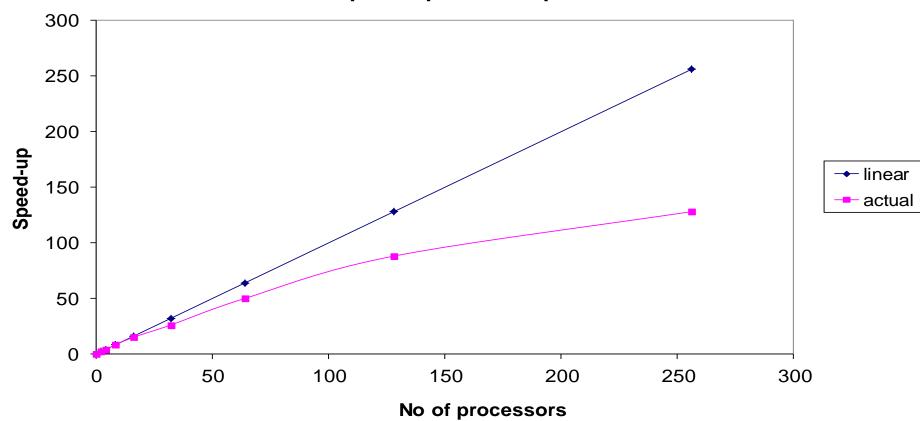
Strong scaling

Example runtime vs No. of processors



Weak scaling

Speed-up vs No of processors



Summary

- There are a variety of considerations when parallelising code
- Scaling is important, as the more a code scales the larger a machine it can take advantage of
- Metrics exist to give you an indication of how well your code performs and scales
- A variety of patterns exist that can provide well known approaches to parallelising a serial problem
 - You will see examples of some of these during the practical sessions

