Parallel Models

Different ways to exploit parallelism

EPSRC

Sl s
AP
o - fexy

VO C

W

I
Outline

Shared-Variables Parallelism

threads

shared-memory architectures
Message-Passing Parallelism

processes

distributed-memory architectures
Practicalities

compilers

libraries

usage on real HPC architectures

epcc

Shared Variables

Threads-based parallelism

\vl\“lv‘F
<<»x 4)4’,
ARE, 7
archer e OCC| &
. =l .
ij\ 'JT‘ ;;N
N 4
4,)1_\]‘,,\,\“2‘

N
Shared-memory concepts

Have already covered basic concepts
threads can all see data of parent process
can run on different cores
potential for parallel speedup I

Po(To)

epcc

sz<» i
=
==
o)
A

N
Analogy

One very large whiteboard in a two-person office
the shared memory

Two people working on the same problem
the threads running on different cores attached to the memory

How do they collaborate? shared
working together
but not interfering

Also need private data

~lepcc

sz<» i
=
==
o
A

Thread Communication

Thread 1 Thread 2
Program mya=23

a=mvya mya=a-+1
Private 3 4
data S
Shared 23
data

epcc

&

~ e
o

<

N
Synchronisation

Synchronisation crucial for shared variables approach
thread 2's code must execute after thread 1

Most commonly use global barrier synchronisation
other mechanisms such as locks also available

Writing parallel codes relatively straightforward
access shared data as and when its needed

Getting correct code can be difficult!

epce

Qf() N
=
==
o)
A

N
Specific example

Computing asum = a,+ a; + .. a,

Shared: asum=0

main array: a [8] Py

result: asum

' : Po(To) Po(T,)
private: ° °

loop counter: i Gg a,

loop limits: istart, istop 9 loop: i =+ista[ﬂ_f']cfist°P as

myasum += al[i

local sum: myasum a, end loop a

synchronisation: AN ! v | @

thread0: asum += myasum

barrier
threadl: asum += myasum

asum

©)=rcher epcc

Hardware

Needs support of a shared-memory architecture

|
H [[H

—J |C—3

N
Threads: Summary

Shared blackboard a good analogy for thread parallelism

Requires a shared-memory architecture
In HPC terms, cannot scale beyond a single node

Threads operate independently on the shared data
need to ensure they don't interfere; synchronisation is crucial

Threading in HPC usually uses OpenMP directives
supports common parallel patterns
e.g. loop limits computed by the compiler
e.g. summing values across threads done automatically

epce

Qf() N
=
==
o)
A

Message Passing

Process-based parallelism

\N]\./E
<<»x 4)4’,
< i A
archer SPCC| &2
. Nel .
ij\ 'JT ;;N
) =
4,)1-\]%\1\%

Analogy

Two whiteboards in different single-person offices
the distributed memory

Two people working on the same problem
the processes on different nodes attached to the interconnect

How do they collaborate?
to work on single problem

Explicit communication
e.g. by telephone
no shared data

epCceC

"Zfo g
o 5
==h
o
“<

Process communication

Process 1 Process 2
— Recv (1l,Db
Program 2723 (1,0)
Send (2, a) a=b+1
23} 24
Data | |7 N
23) 23

5
N ~7 €
A
==
o
o

epce

N
Synchronisation

Synchronisation is automatic in message-passing
the messages do it for you

Make a phone call ...
... wait until the receiver picks up

Receive a phone call
... wait until the phone rings

No danger of corrupting someone else’s data
no shared blackboard

epce

Qf() N
=
==
o)
A

Hardware

| |
Proces

N\

i

Processo

Processo

Natural map to
distributed-memory

one pProcess per
processor-core

messages go over
the interconnect,
between nodes/OS’s

Processo

r——
ProCcessor

)
3

Processo

N
Processes. Summary

Processes cannot share memory
ring-fenced from each other
analogous to white boards in separate offices

Communication requires explicit messages
analogous to making a phone call, sending an email, ...
synchronisation is done by the messages

Almost exclusively use Message-Passing Interface
MPI is a library of function calls / subroutines

epcc

QfO i
=
==
o)
A

Practicalities

8-core machine might only have 2
nodes

how do we run MPI on a real HPC
machine?

Mostly ignore architecture
pretend we have single-core nodes
one MPI process per processor-core
e.g. run 8 processes on the 2 nodes

Messages between processes on

the same node are fast
but remember they also share access

to the network
epCcc

Message Passing on Shared Memory

Run one Process per core
don'’t directly exploit shared memory
analogy is phoning your office mate
actually works well in practice!

Message-passing

programs run by a

special job launcher
user specifies #copies

some control over
allocation to nodes

N
Summary

Shared-variables parallelism
uses threads
requires shared-memory machine
easy to implement but limited scalability
iIn HPC, done using OpenMP compilers

Distributed memory
USes processes
can run on any machine: messages can go over the interconnect
harder to implement but better scalability
on HPC, done using the MPI library

epce

