
Parallel Models
Different ways to exploit parallelism

Outline

• Shared-Variables Parallelism

• threads

• shared-memory architectures

• Message-Passing Parallelism

• processes

• distributed-memory architectures

• Practicalities

• compilers

• libraries

• usage on real HPC architectures

Shared Variables

Threads-based parallelism

Shared-memory concepts

• Have already covered basic concepts

• threads can all see data of parent process

• can run on different cores

• potential for parallel speedup

Analogy

• One very large whiteboard in a two-person office

• the shared memory

• Two people working on the same problem

• the threads running on different cores attached to the memory

• How do they collaborate?

• working together

• but not interfering

• Also need private data

my

data

shared

data
my

data

Thread 1 Thread 2

mya=23

mya=a+1

23

23 24

Program

Private

data

Shared

data

a=mya

Thread Communication

Synchronisation

• Synchronisation crucial for shared variables approach

• thread 2’s code must execute after thread 1

• Most commonly use global barrier synchronisation

• other mechanisms such as locks also available

• Writing parallel codes relatively straightforward

• access shared data as and when its needed

• Getting correct code can be difficult!

Specific example
• Computing asum = a0+ a1 + … a7

• shared:

• main array: a[8]

• result: asum

• private:

• loop counter: i

• loop limits: istart, istop

• local sum: myasum

• synchronisation:

• thread0: asum += myasum

• barrier

• thread1: asum += myasum

loop: i = istart,istop

 myasum += a[i]

end loop

asum

asum=0

Hardware

Memory

Processor

Shared Bus

Processor Processor Processor Processor

• Needs support of a shared-memory architecture

Threads: Summary

• Shared blackboard a good analogy for thread parallelism

• Requires a shared-memory architecture

• in HPC terms, cannot scale beyond a single node

• Threads operate independently on the shared data

• need to ensure they don’t interfere; synchronisation is crucial

• Threading in HPC usually uses OpenMP directives

• supports common parallel patterns

• e.g. loop limits computed by the compiler

• e.g. summing values across threads done automatically

Message Passing

Process-based parallelism

Analogy

• Two whiteboards in different single-person offices

• the distributed memory

• Two people working on the same problem

• the processes on different nodes attached to the interconnect

• How do they collaborate?

• to work on single problem

• Explicit communication

• e.g. by telephone

• no shared data

my

data

my

data

a=23 Recv(1,b)
Process 1 Process 2

23

23

24

23

Program

Data

Send(2,a) a=b+1

Process communication

Synchronisation

• Synchronisation is automatic in message-passing

• the messages do it for you

• Make a phone call …

• … wait until the receiver picks up

• Receive a phone call

• … wait until the phone rings

• No danger of corrupting someone else’s data

• no shared blackboard

Hardware

• Natural map to

distributed-memory

• one process per

processor-core

• messages go over

the interconnect,

between nodes/OS’s

Processor

Processor

Processor

Processor

Processor

Processor

Processor
Processor

Interconnect

Processes: Summary

• Processes cannot share memory

• ring-fenced from each other

• analogous to white boards in separate offices

• Communication requires explicit messages

• analogous to making a phone call, sending an email, …

• synchronisation is done by the messages

• Almost exclusively use Message-Passing Interface

• MPI is a library of function calls / subroutines

Practicalities
• 8-core machine might only have 2

nodes

• how do we run MPI on a real HPC
machine?

• Mostly ignore architecture

• pretend we have single-core nodes

• one MPI process per processor-core

• e.g. run 8 processes on the 2 nodes

• Messages between processes on
the same node are fast

• but remember they also share access
to the network

Interconnect

Message Passing on Shared Memory

• Run one process per core

• don’t directly exploit shared memory

• analogy is phoning your office mate

• actually works well in practice!

my

data

my

data

• Message-passing

programs run by a

special job launcher

• user specifies #copies

• some control over

allocation to nodes

Summary

• Shared-variables parallelism

• uses threads

• requires shared-memory machine

• easy to implement but limited scalability

• in HPC, done using OpenMP compilers

• Distributed memory

• uses processes

• can run on any machine: messages can go over the interconnect

• harder to implement but better scalability

• on HPC, done using the MPI library

