ot
/

3
-

ol Threaded
- Programming

[e S
N ~ 4

Lecture 6: Tasks

What are tasks?

* Tasks are independent units of work ‘

* Tasks are composed of:
— code to execute
— data environment

* Threads are assigned to perform the
work of each task.

* The runtime system will either: Serial Parallel

— Defer tasks for later execution.
— Execute the tasks immediately.

RERtA L

OpenMP tasks “’““*‘im

The task construct defines a section of code

construct will package up the task for execution

some point in the future

Inside a parallel region, a thread encountering a task

Some thread in the parallel region will execute the task at

Tasks can be nested: i.e. a task may itself generate tasks.

T)L LU
task directive L\ lepec]

Syntax:
Fortran:
'$SOMP TASK [clauses]
structured block
'$OMP END TASK
C/C++:

#pragma omp task [clauses]

structured-block

When/where are tasks complete? RitaAIN (S O|0al)

* At thread barriers (explicit or implicit)

— applies to all tasks generated in the current parallel region up to the
barrier

* At taskwait directive

i.e. Wait until all tasks defined in the current task have completed.
Fortran: !'$OMP TASKWAIT
C/C++: #pragma omp taskwait

Note: applies only to tasks generated in the current task, not to
“descendants” .

Example CTTHNATRY L (

P = listhead ;

while (p) {
process (p);
p=next (p) ;

}

Classic linked list traversal

* Do some work on each item in the list

Assume that items can be processed independently

Cannot use an OpenMP loop directive

Parallel pointer chasing "\:ﬂ‘-\\l‘m

Only one thread
#pragma omp parallel packages tasks
{
#pragma omp single“private (p)

{

p = listhead ;

while (p) {

#pragma omp task firstprivate (p)
{
process (p);

}

p=next (p) ; makes a copy of p
} when the task is
} packaged
}

Parallel pointer chasing or‘? M\‘.m

#pragma omp parallel All threads package
{ *”,,’/,,,//””’/’ tasks
#pragma omp for“private (p)
for (int i =0; i <numlists
P = listheads [i]
while (p) {
#pragma omp task firstprivate (p)
{
process (p);
}
p=next (p)
}

;oi+t) |

.
4

Data Sharing ""m‘*‘@m

¢ The default for tasks is usually firstprivate, because the task may not be
executed until later (and variables may have gone out of scope).

¢ Variables that are shared in all constructs starting from the innermost
enclosing parallel construct are shared.

#fpragma omp parallel shared(A) private(B)
{

#pragma omp task Ais shared

(B is firstprivate
int C; / C is private

compute (A, B, C);

Data sharing (cont.) L “A\““m

* Things can get rather complicated with nested tasks....

#pragma omp task private (B)
{

B = ...
#pragma omp task shared (B)

{
compute (B) ;
}

#pragma omp taskwait
}

* Every outer task has its own copy of B

* All inner tasks use their parent task’s copy of B

* Taskwait ensures these don’t go out of scope....
RENANLA L N 10

Example: postorder tree ifé\%éml

* Binary tree of tasks

* Traversed using a recursive function

¢ A task cannot complete until all tasks below it in the tree are complete

void postorder (node *p) {
if (p->left)
#fpragma omp task
{ postorder (p->left); }
if (p->right)
#pragma omp task
{ postorder (p->right); }
#pragma omp taskwait - Parent task suspended until

process (p->data) ; children tasks complete

REREA L - 11

Task switching B0\ lepcc)

* Certain constructs have task scheduling points at defined
locations within them

* When a thread encounters a task scheduling point, it is
allowed to suspend the current task and execute another
(called task switching)

* |t can then return to the original task and resume

Task switching TTREEEIN Y S

#pragma omp single
{
for (i=0; i<ONEZILLION; i++)
#pragma omp task
process (item[i]) ;

}

* Risk of generating too many tasks
* Generating task will have to suspend for a while

* With task switching, the executing thread can:
— execute an already generated task (draining the “task poof”)
— execute the encountered task

REREA L - 13

Using tasks Jisi “W‘

* Getting the data attribute scoping right can be quite tricky
— default scoping rules different from other constructs
— as ever, using default (none) is a good idea

* Don’t use tasks for things already well supported by OpenMP
— e.g. standard do/for loops
— the overhead of using tasks is greater

* Don’t expect miracles from the runtime

— best results usually obtained where the user controls the
number and granularity of tasks

pERtEA L - 14

Parallel pointer chasing a&é&mm

#pragma omp parallel
{

#pragma omp single private (p)
{
p = listhead ;
while (p) {
#pragma omp task firstprivate (p)
{

. process
process (p,n1tems);¢_____nitemsat
} atime
for (i=0; i<nitems &&p; i++) {
p=next (p)
}
} \
} skip nitems ahead
} in the list
- YRR
- - |
i W iDA
Exercise AT .

* Mandelbrot example using tasks.

