
1

Threaded
Programming

Lecture 6: Tasks

What are tasks?

•  Tasks are independent units of work

•  Tasks are composed of:
–  code to execute
–  data environment

•  Threads are assigned to perform the
work of each task.

•  The runtime system will either:
–  Defer tasks for later execution.
–  Execute the tasks immediately.

Serial Parallel

2

3

OpenMP tasks

•  The task construct defines a section of code

•  Inside a parallel region, a thread encountering a task
construct will package up the task for execution

•  Some thread in the parallel region will execute the task at
some point in the future

•  Tasks can be nested: i.e. a task may itself generate tasks.

4

task directive

Syntax:
Fortran:

 !$OMP TASK [clauses]

 structured block

 !$OMP END TASK

C/C++:

 #pragma omp task [clauses]

 structured-block

3

5

When/where are tasks complete?

•  At thread barriers (explicit or implicit)
–  applies to all tasks generated in the current parallel region up to the

barrier

•  At taskwait directive
–  i.e. Wait until all tasks defined in the current task have completed.
–  Fortran: !$OMP TASKWAIT
–  C/C++: #pragma omp taskwait

–  Note: applies only to tasks generated in the current task, not to
“descendants” .

6

Example

•  Classic linked list traversal

•  Do some work on each item in the list

•  Assume that items can be processed independently

•  Cannot use an OpenMP loop directive

p = listhead ;
while (p) {
 process (p);
 p=next(p) ;
}

4

7

Parallel pointer chasing

#pragma omp parallel
{
 #pragma omp single private(p)
 {
 p = listhead ;
 while (p) {
 #pragma omp task firstprivate(p)
 {
 process (p);
 }
 p=next (p) ;
 }
 }
}

makes a copy of p
when the task is
packaged

Only one thread
packages tasks

8

Parallel pointer chasing on multiple lists

#pragma omp parallel
{
 #pragma omp for private(p)
 for (int i =0; i <numlists ; i++) {
 p = listheads [i] ;
 while (p) {
 #pragma omp task firstprivate(p)
 {
 process (p);
 }
 p=next (p) ;
 }
 }
}

All threads package
tasks

5

9

Data Sharing

•  The default for tasks is usually firstprivate, because the task may not be
executed until later (and variables may have gone out of scope).

•  Variables that are shared in all constructs starting from the innermost
enclosing parallel construct are shared.

#pragma omp parallel shared(A) private(B)
{
 ...
#pragma omp task
 {
 int C;
 compute(A, B, C);
 }
}

A is shared
B is firstprivate
C is private

Data sharing (cont.)

•  Things can get rather complicated with nested tasks….

•  Every outer task has its own copy of B

•  All inner tasks use their parent task’s copy of B

•  Taskwait ensures these don’t go out of scope….
10

#pragma omp task private(B)
{
 B = ...
#pragma omp task shared (B)
 {
 compute(B);
 }
 ...
#pragma omp taskwait
}

6

11

Example: postorder tree traversal

void postorder(node *p) {
 if (p->left)
 #pragma omp task
 { postorder(p->left); }
 if (p->right)
 #pragma omp task
 { postorder(p->right); }
 #pragma omp taskwait
 process(p->data);
}

Parent task suspended until
children tasks complete

•  Binary tree of tasks

•  Traversed using a recursive function

•  A task cannot complete until all tasks below it in the tree are complete

12

Task switching

•  Certain constructs have task scheduling points at defined
locations within them

•  When a thread encounters a task scheduling point, it is
allowed to suspend the current task and execute another
(called task switching)

•  It can then return to the original task and resume

7

13

Task switching

 #pragma omp single
 {
 for (i=0; i<ONEZILLION; i++)
 #pragma omp task
 process(item[i]);
 }

 •  Risk of generating too many tasks

•  Generating task will have to suspend for a while

•  With task switching, the executing thread can:
–  execute an already generated task (draining the “task pool”)
–  execute the encountered task

14

Using tasks

•  Getting the data attribute scoping right can be quite tricky
–  default scoping rules different from other constructs
–  as ever, using default(none) is a good idea

•  Don’t use tasks for things already well supported by OpenMP
–  e.g. standard do/for loops
–  the overhead of using tasks is greater

•  Don’t expect miracles from the runtime
–  best results usually obtained where the user controls the

number and granularity of tasks

8

15

Parallel pointer chasing again
#pragma omp parallel
{
 #pragma omp single private(p)
 {
 p = listhead ;
 while (p) {
 #pragma omp task firstprivate(p)
 {
 process (p,nitems);
 }
 for (i=0; i<nitems &&p; i++){
 p=next (p) ;
 }
 }
 }
}

process
nitems at
a time

skip nitems ahead
in the list

16

Exercise

•  Mandelbrot example using tasks.

