
EPCC, University of Edinburgh

Multicore

Workshop

Caches

Mark Bull

David Henty

Caches

Overview

• Why caches are needed

• How caches work

• Cache design and performance.

2 20/11/2012

http://www.epcc.ed.ac.uk/

Caches

The memory speed gap

• Moore’s Law: processors speed doubles every 18

months.

– True for last 35 years....

• Memory speeds (DRAM) are not keeping up (double

every 5 years) .

• In 1980, both CPU and memory cycles times were

around 1 microsecond.

– Floating point add and memory load took about the same time.

• In 2000 CPU cycles times were around 1 nanosecond,

memory cycle times around 100 nanoseconds.

– Memory load is 2 orders of magnitude more expensive than
floating point add.

3 20/11/2012

http://www.epcc.ed.ac.uk/

Caches

Principal of locality

• Almost every program exhibits some degree of locality.

– Tend to reuse recently accessed data and instructions.

• Two types of data locality:

1. Temporal locality

A recently accessed item is likely to be reused in the near future.

e.g. if x is read now, it is likely to be read again, or written, soon.

2. Spatial locality

Items with nearby addresses tend to be accessed close together in time.

e.g. if y[i]is read now, y[i+1] is likely to be read soon.

4 20/11/2012

http://www.epcc.ed.ac.uk/

Caches

What is cache memory?

• Small, fast, memory.

• Placed between processor and main memory.

Processor

Cache Memory

Main Memory

5 20/11/2012

http://www.epcc.ed.ac.uk/

Caches

How does this help?

• Cache can hold copies of data from main memory locations.

• Can also hold copies of instructions.

• Cache can hold recently accessed data items for fast re-

access.

• Fetching an item from cache is much quicker than fetching

from main memory.

– 1 nanosecond instead of 100.

• For cost and speed reasons, cache is much smaller than

main memory.

6 20/11/2012

http://www.epcc.ed.ac.uk/

Caches

Blocks

• A cache block is the minimum unit of data which can be

determined to be present in or absent from the cache.

• Normally a few words long: typically 32 to 128 bytes.

• See later for discussion of optimal block size.

• N.B. a block is sometimes also called a line.

7 20/11/2012

http://www.epcc.ed.ac.uk/

Caches

Design decisions

• When should a copy of an item be made in the cache?

• Where is a block placed in the cache?

• How is a block found in the cache?

• Which block is replaced after a miss?

• What happens on writes?

Methods must be simple (hence cheap and fast to implement in

hardware).

8 20/11/2012

http://www.epcc.ed.ac.uk/

Caches

When to cache?

• Always cache on reads

– except in special circumstances

• If a memory location is read and there isn’t a copy in the

cache (read miss), then cache the data.

• What happens on writes depends on the write strategy: see

later.

• N.B. for instruction caches, there are no writes

9 20/11/2012

http://www.epcc.ed.ac.uk/

Caches

• Cache is organised in blocks.

• Each block has a number:

0
1

3
2

4

1023
1022

32 bytes

Where to cache?

10 20/11/2012

http://www.epcc.ed.ac.uk/

Caches

Bit selection

• Simplest scheme is a direct mapped cache

• If we want to cache the contents of an address, we ignore

the last n bits where 2n is the block size.

• Block number (index) is:

 (remaining bits) MOD (no. of blocks in cache)

– next m bits where 2m is number of blocks.

Full address

block

offset

block

index

01110011101011101 0110011100 10100

11 20/11/2012

http://www.epcc.ed.ac.uk/

Caches

Set associativity

• Cache is divided into sets

• A set is a group of blocks (typically 2 or 4)

• Compute set index as:

 (remaining bits) MOD (no. of sets in cache)

• Data can go into any block in the set.

Full address

block

offset

set

index

011100111010111010 110011100 10100

12 20/11/2012

http://www.epcc.ed.ac.uk/

Caches

Set associativity

• If there are k blocks in a set, the cache is said to be k-way

set associative.

• If there is just one set, the cache is fully associative.

0

1

511

32 bytes

13 20/11/2012

http://www.epcc.ed.ac.uk/

Caches

How to find a cache block

• Whenever we load an address, we have to check whether it is

cached.

• For a given address, find set where it might be cached.

• Each block has an address tag.

– address with the block index and block offset stripped off.

• Each block has a valid bit.

– if the bit is set, the block contains a valid address

• Need to check tags of all valid blocks in set for target address.

tag

Full address

block

offset

set

index

011100111010111010 110011100 10100

14 20/11/2012

http://www.epcc.ed.ac.uk/

Caches

Which block to replace?

• In a direct mapped cache there is no choice: replace the

selected block.

• In set associative caches, two common strategies:

Random

– Replace a block in the selected set at random.

Least recently used (LRU)

– Replace the block in set which was unused for longest time.

• LRU is better, but harder to implement.

15 20/11/2012

http://www.epcc.ed.ac.uk/

Caches

What happens on write?

• Writes are less common than reads.

• Two basic strategies:

Write through

– Write data to cache block and to main memory.

– Normally do not cache on miss.

Write back

– Write data to cache block only. Copy data back to main memory only

when block is replaced.

– Dirty/clean bit used to indicate when this is necessary.

– Normally cache on miss.

16 20/11/2012

http://www.epcc.ed.ac.uk/

Caches

Write through vs. write back

• With write back, not all writes go to main memory.

– reduces memory bandwidth.

– harder to implement than write through.

• With write through, main memory always has valid copy.

– useful for I/O and for some implementations of multiprocessor cache

coherency.

– can avoid CPU waiting for writes to complete by use of write buffer.

17 20/11/2012

http://www.epcc.ed.ac.uk/

Caches

Cache performance

• Average memory access cost =

 hit time + miss ratio x miss time

• Can try to to minimise all three components

time to load data

from cache to CPU proportion of accesses

which cause a miss

time to load data from

main memory to cache

18 20/11/2012

http://www.epcc.ed.ac.uk/

Caches

Cache misses: the 3 Cs

• Cache misses can be divided into 3 categories:

Compulsory or cold start

– first ever access to a block causes a miss

Capacity

– misses caused because the cache is not large enough to hold all data

Conflict

– misses caused by too many blocks mapping to same set.

19 20/11/2012

http://www.epcc.ed.ac.uk/

Caches

Block size

• Choice of block size is a tradeoff.

• Large blocks result in fewer misses because they exploit

spatial locality.

• However, if the blocks are too large, they can cause

additional capacity/conflict misses (for the same total cache

size).

• Larger blocks have higher miss times (take longer to load)

20 20/11/2012

http://www.epcc.ed.ac.uk/

Caches

Set associativity

• Having more sets reduces the number of conflict misses.

– 8-way set associate is almost as good as fully associative.

• Having more sets increases the hit time.

– takes longer to find the correct block.

• Conflict misses can also be reduced by using a victim cache

– a small buffer which stores the most recently evicted blocks

– helps prevent thrashing, where subsequent accesses all resolve to

the same set.

21 20/11/2012

http://www.epcc.ed.ac.uk/

Caches

Prefetching

• One way to reduce miss rate is to load data into cache

before the load is issued. This is called prefetching

• Requires modifications to the processor

– must be able to support multiple outstanding cache misses.

– additional hardware is required to keep track of the

outstanding prefetches

– number of outstanding misses is limited (e.g. 4 or 8): extra

benefit from allowing more does not justify the hardware cost.

22 20/11/2012

http://www.epcc.ed.ac.uk/

Caches

• Hardware prefetching is typically very simple: e.g. whenever

a block is loaded, fetch consecutive block.

– very effective for instruction cache

– less so for data caches, but can have multiple streams.

– requires regular data access patterns.

• Compiler can place prefetch instructions ahead of loads.

– requires extensions to the instruction set

– cost in additional instructions.

– no use if placed too far ahead: prefetched block may be replaced

before it is used.

23 20/11/2012

http://www.epcc.ed.ac.uk/

Caches

Multiple levels of cache

• One way to reduce the miss time is to have more than one

level of cache.

 Processor

Level 1 Cache

Main Memory

Level 2 Cache

24 20/11/2012

http://www.epcc.ed.ac.uk/

Caches

Multiple levels of cache

• Second level cache should be much larger than first level.

– otherwise a level 1 miss will almost always be level 2 miss as well.

• Second level cache will therefore be slower

– still much faster than main memory.

• Block size can be bigger, too

– lower risk of conflict misses.

• Typically, everything in level 1 must be in level 2 as well

(inclusion)

– required for cache coherency in multiprocessor systems.

25 20/11/2012

http://www.epcc.ed.ac.uk/

Caches

Multiple levels of cache

• Three levels of cache are now commonplace.

– All 3 levels now on chip

– Common to have separate level 1 caches for instructions and data,

and combined level 2 and 3 caches for both

• Complicates design issues

– need to design each level with knowledge of the others

– inclusion with differing block sizes

– coherency....

26 20/11/2012

http://www.epcc.ed.ac.uk/

Caches 27

Memory hierarchy

Registers

CPU

L1 Cache

L2 Cache

L3 Cache

Main Memory

Speed (and cost) Capacity
~1 Kb

~100 Kb

~1-10 Mb

~10-50 Mb

~1 Gb

1 cycle

~20 cycles

~300 cycles

~50 cycles

2-3 cycles

20/11/2012

http://www.epcc.ed.ac.uk/

