
EPCC, University of Edinburgh

Multicore

Workshop

Cache Coherency

Mark Bull

David Henty

Multicore Workshop: Cache Coherency 2

• Each processor in an SMP has equal access to all parts of
memory

– same latency and bandwidth

Symmetric MultiProcessing

• Examples

– IBM servers, Sun HPC Servers, Fujitsu PrimePower,

multiprocessor PCs

P P P P P P

Bus/Interconnect

Memory

http://www.epcc.ed.ac.uk/

3

Multicore chips

• Now possible (and economically desirable) to place multiple

processors on a chip.

• From a programming perspective, this is largely irrelevant

– simply a convenient way to build a small SMP

– on-chip buses can have very high bandwidth

• Main difference is that processors may share caches

• Typically, each core has its own Level 1 and Level 2 caches,

but the Level 3 cache is shared between cores

Multicore Workshop: Cache Coherency

http://www.epcc.ed.ac.uk/

4

Typical cache hierarchy

L3 Cache

CPU

L1

L2

CPU

L1

L2

CPU

L1

L2

CPU

L1

L2

Main Memory

Chip

Multicore Workshop: Cache Coherency

http://www.epcc.ed.ac.uk/

5

Power4 two-core chip

Multicore Workshop: Cache Coherency

http://www.epcc.ed.ac.uk/

6

Intel Nehalem quad-core chip

Multicore Workshop: Cache Coherency

http://www.epcc.ed.ac.uk/

7

Power7 8-core chip

Multicore Workshop: Cache Coherency

http://www.epcc.ed.ac.uk/

8

• This means that multiple cores on the same chip can

communicate with low latency and high bandwidth

– via reads and writes which are cached in the shared cache

• However, cores contend for space in the shared cache

– one thread may suffer capacity and/or conflict misses caused by

threads/processes on another core

– harder to have precise control over what data is in the cache

– if only single core is running, then it may have access to the whole

shared cache

• Cores also have to share off-chip bandwidth

– for access to main memory

Multicore Workshop: Cache Coherency

http://www.epcc.ed.ac.uk/

Multicore Workshop: Cache Coherency

Multiprocessors

• Simple way to build a (small-scale) parallel machine is to

connect multiple processors to a single memory (true shared

memory)

9

http://www.epcc.ed.ac.uk/

Multicore Workshop: Cache Coherency

Cache coherency

• Main difficulty in building multiprocessor systems is the

cache coherency problem.

• The shared memory programming model assumes that a

shared variable has a unique value at a given time.

• Caching in a shared memory system means that multiple

copies of a memory location may exist in the hardware.

• To avoid two processors caching different values of the

same memory location, caches must be kept coherent.

• To achieve this, a write to a memory location must cause all

other copies of this location to be removed from the caches

they are in.

10

http://www.epcc.ed.ac.uk/

Multicore Workshop: Cache Coherency

Coherence protocols

• Need to store information about sharing status of cache

blocks

– has this block been modified?

– is this block stored in more than one cache?

• Two main types of protocol

1. Snooping (or broadcast) based

– every cached copy caries sharing status

– no central status

– all processors can see every request

2. Directory based

– sharing status stored centrally (in a directory)

11

http://www.epcc.ed.ac.uk/

Multicore Workshop: Cache Coherency

Snoopy protocols

• Already have a valid tag on cache lines: this can be used for

invalidation.

• Need an extra tag to indicate sharing status.

– can use clean/dirty bit in write-back caches

• All processors monitor all bus transactions

– if an invalidation message is on the bus, check to see if the block is

cached, and if so invalidate it

– if a memory read request is on the bus, check to see if the block is

cached, and if so return data and cancel memory request.

• Many different possible implementations

12

http://www.epcc.ed.ac.uk/

Multicore Workshop: Cache Coherency

3 state snoopy protocol: MSI

• Simplest protocol which allows multiple copies to exist

• Each cache block can exist in one of three states:

– Modified: this is the only valid copy in any cache and its value is different
from that in memory

– Shared: this is a valid copy, but other caches may also contain it, and its
value is the same as in memory

– Invalid: this copy is out of date and cannot be used.

• Model can be described by a state transition diagram.

– state transitions can occur due to actions by the processor, or by the bus.

– state transitions may trigger actions

 Processor actions

• read (PrRd)

• write (PrWr)

Bus actions

• read (BusRd)

• read exclusive

(BusRdX)

• flush to memory

(Flush)

13

http://www.epcc.ed.ac.uk/

Multicore Workshop: Cache Coherency

MSI Protocol walk through

• Assume we have three processors.

• Each is reading/writing the same value from memory where

R1 means a read by processor 1 and W3 means a write by

processor 3.

• For simplicity sake, the memory location will be referred to as

“value.”

• The memory access stream we will walk through is:

R1, R2, W3, R2, W1, W2, R3, R2

14

http://www.epcc.ed.ac.uk/

Multicore Workshop: Cache Coherency

P1 wants to read the value. The cache does not have it and generates a

BusRd for the data. Main memory controller provides the data. The data

goes into the cache in the shared state.

R1

P1 P3 P2

Snooper Snooper Snooper

PrRd

BusRd

value S

Main Memory

15

http://www.epcc.ed.ac.uk/

Multicore Workshop: Cache Coherency

P2 wants to read the value. Its cache does not have the data, so it places a

BusRd to notify other processors and ask for the data. The memory

controller provides the data.

P1 P3 P2

Snooper Snooper Snooper

value S

PrRd

BusRd

R2

value S

Main Memory

16

http://www.epcc.ed.ac.uk/

Multicore Workshop: Cache Coherency

P3 wants to write the value. It places a BusRdX to get exclusive access and

the most recent copy of the data. The caches of P1 and P2 see the BusRdX

and invalidate their copies. Because the value is still up-to-date in memory,

memory provides the data.

P1 P3 P2

Snooper Snooper Snooper

value S

W3

value S

PrWr

BusRdX

I I value M

Main Memory

17

http://www.epcc.ed.ac.uk/

Multicore Workshop: Cache Coherency

P2 wants to read the value. P3’s cache has the most up-to-date copy and will

provide it. P2’s cache puts a BusRd on the bus. P3’s cache snoops this and

cancels the memory access because it will provide the data. P3’s cache

flushes the data to the bus.

Main Memory

P1 P3 P2

Snooper Snooper Snooper

value M value I

R2

value I

PrRd

BusRd

S S

Flush

18

http://www.epcc.ed.ac.uk/

Multicore Workshop: Cache Coherency

P1 wants to write to its cache. The cache places a BusRdX on the bus to gain

exclusive access and the most up-to-date value. Main memory is not stale so

it provides the data. The snoopers for P2 and P3 see the BusRdX and

invalidate their copies in cache.

P1 P3 P2

Snooper Snooper Snooper

value S value I

W1

value S

PrWr

BusRdX

I I M

Main Memory

19

http://www.epcc.ed.ac.uk/

Multicore Workshop: Cache Coherency

W2

P2 wants to write the value. Its cache places a BusRdX to get exclusive

access and the most recent copy of the data. P1’s snooper sees the

BusRdX and flushes the data to the bus. Also, it invalides the data in its

cache and cancels the memory access.

P1 P3 P2

Snooper Snooper Snooper

value I value M value I

PrWr

BusRdX

I M

Flush

Main Memory

20

http://www.epcc.ed.ac.uk/

Multicore Workshop: Cache Coherency

P3 wants to read the value. Its cache does not have a valid copy, so it

places a BusRd on the bus. P2 has a modified copy, so it flushes the data

on the bus and changes the status of the cache data to shared. The flush

cancels the memory access and updates the data in memory as well.

Main Memory

P1 P3 P2

Snooper Snooper Snooper

value I value I

R3

value M

PrRd

BusRd
Flush

S S

21

http://www.epcc.ed.ac.uk/

Multicore Workshop: Cache Coherency

P2 wants to read the value. Its cache has an up-to-date copy. No

bus transactions need to take place as there is no cache miss.

P1 P3 P2

Snooper Snooper Snooper

value S value I

R2

value S

PrRd

Main Memory

22

http://www.epcc.ed.ac.uk/

Multicore Workshop: Cache Coherency

MSI state transitions

M

I

S

PrRd PrWr

PrWr=>BusRdX

PrRd=>BusRd

PrWr=>BusRdX PrRd BusRd

BusRdX

BusRd=>Flush

BusRdX=>Flush

A=>B means that when action A occurs, the state transition indicated

happens, and action B is generated

23

http://www.epcc.ed.ac.uk/

Multicore Workshop: Cache Coherency

Other protocols

• MSI is inefficient: it generates more bus traffic than is

necessary

• Can be improved by adding other states, e.g.

– Exclusive: this copy has not been modified, but it is the only copy in
any cache

– Owned: this copy has been modified, but there may be other copies in
shared state

• MESI and MOESI protocols are more commonly used

protocols than MSI

• MSI is nevertheless a useful mental model for the

programmer

• Also possible to update values in other caches on writes,

instead of invalidating them

24

http://www.epcc.ed.ac.uk/

Multicore Workshop: Cache Coherency

False sharing

• The units of data on which coherency operations are performed are

cache blocks: the size of these units is usually 64 or 128 bytes.

• The fact that coherency units consist of multiple words of data gives rise

to the phenomenon of false sharing.

• Consider what happens when two processors are both writing to different

words on the same cache line.

– no data values are actually being shared by the processors

• Each write will invalidate the copy in the other processor’s cache, causing

a lot of bus traffic and memory accesses.

– same problem if one processor is writing and the other reading

• Can be a significant performance problem in threaded programs

• Quite difficult to detect

25

http://www.epcc.ed.ac.uk/

