
Xeon Phi Basics

Emmanouil (Manos) Farsarakis

April 28, 2015

Contents
1 Aims 1

2 Introduction 1

3 Instructions 2
3.1 Log into COSMOS host and run commands . 2

3.1.1 Procedure for Mac and Linux users . 2
3.1.2 Procedure for Windows users . 2

3.2 Download and extract the exercise files . 2
3.3 Setup host environment . 3
3.4 Use some runtime tools to check mic status . 3
3.5 Run host test . 4
3.6 Run offload test . 4
3.7 Run native test . 6

1 Aims

The aim of this exercise is to get you logged onto and set up on the COSMOS Xeon Phi machine. You
will then run a series of tests to get you familiarised with the COSMOS environment and working with
Xeon Phis.

You can find more details on COSMOS at:

• http://www.cosmos.damtp.cam.ac.uk/

The machine has 6 Xeon Phi cards labelled mic0 up to mic5. Your demonstrators will tell you which card
you should use for this practical as we need spread the load evenly across the cards.

2 Introduction

In this exercise you will use your provided guest account to:

1. log onto the COSMOS host nodes;

2. copy practical material from a central location to your account;

3. unpack the practical material archive;

4. load compilers and other Intel libraries necessary for using the Xeon Phi;

1

http://www.cosmos.damtp.cam.ac.uk/

5. use runtime tools to check the status of the Xeon Phi cards;

6. login to the Xeon Phi;

7. run parallel codes on the host and on the Xeon Phi;

Demonstrators will be on hand to help you as required. Please do ask questions if you do not understand
anything in the instructions - this is what the demonstrators are here for.

3 Instructions

3.1 Log into COSMOS host and run commands

You should have been given a guest account ID – referred to generically here as z3XX – and password.
If you have not, please contact a demonstrator.

3.1.1 Procedure for Mac and Linux users

Open a command line Terminal and enter the following command:

user@laptop$ ssh -Y z3XX@microcosm.damtp.cam.ac.uk
Password:

you should be prompted to enter your password.

3.1.2 Procedure for Windows users

Windows does not generally have SSH installed by default so some extra work is required. You need to
download and install a SSH client application - PuTTY is a good choice:

• http://www.chiark.greenend.org.uk/~sgtatham/putty/.

When you start PuTTY you should be able to enter the COSMOS login address (microcosm.damtp.cam.ac.uk).
When you connect you will be prompted for your username and password.

By default, PuTTY does not send graphics back to your local machine. We will need this later for viewing
the sharpened image, so you should “Enable X11 Forwarding” which is an option in the “Category” menu
under “Connection -> SSH -> X11”. You will need to do this each time before you log in with PuTTy.

3.2 Download and extract the exercise files

Once you have logged into the host machine you need to obtain a copy of the source code. You can obtain
this using wget as follows:

wget https://www.archer.ac.uk/training/course-material/2015/04/
xeonphi_epcc/exercises/exercise1/setup.tar.gz

This package includes executables for CPU-only, Xeon Phi native, and offload versions of a simple
hello world application. Also included in the package is an env.sh file which can be used to setup the
environment for Xeon Phi application development.

To unpack the archive use:

2

http://www.chiark.greenend.org.uk/~sgtatham/putty/

[host]$ tar -xzvf setup.tar.gz
setup/cpu_only.exe
setup/env/env.sh
setup/env/env_mic.sh
setup/mic_native.exe
setup/offload.exe
..

To enter the extracted folder:

[host]$ cd setup

3.3 Setup host environment

First we need to setup the environment to use Intel compilers and Intel MPI. This will be useful for
following practicals so you are more comfortable with the process. We will not be compiling any source
code, but we will run some test applications to make sure your system is up and running as expected.

On this system the environment can be easily set up using module loads and swaps. For the purposes of
this practical try:

[host]$ module swap icomp icomp/15.0.1.133
[host]$ module swap mpt impi/5.0.3.048

To confirm that you are using the expected setup, try:

[host]$ which mpirun
/opt/intel/impi/5.0.3.048/intel64/bin/mpirun
[host]$ which ifort
/opt/intel/composer_xe_2015.1.133/bin/intel64/ifort

And compare your system’s output to the above.

ALTERNATIVES:

Instead of doing switching modules manually, you could use a setup file such as the provided env.sh
file (in the env folder) by executing:

[host]$ source env/env.sh

Please note that not all systems are set up this way. A more general way of loading environment variables
for Intel compilers and MPI (and other Intel tools) is by sourcing the scripts provided by Intel in the Intel
setup folders. The process above is equivalent to:

[host]$ source /opt/intel/impi/5.0.3.048/intel64/bin/mpivars.sh
[host]$ source /opt/intel/composer_xe_2015.1.133/bin/compilervars.sh intel64

3.4 Use some runtime tools to check mic status

One very commonly used tool when you first use a machine with Xeon Phi cards is the micinfo
command which is part of the Intel MPSS (Manycore Platform Software Stack).

Enter the command:

[host]$ micinfo

Study the output to confirm the number of Xeon Phi cards (6) and their status, memory and other char-
acteristics.

Similarly, one can use the following commands for more information on the Xeon Phi cards of a system.

3

[host]$ miccheck
[host]$ micsmc
[host]$ cat /etc/hosts | grep mic

Finally, we will log into a Xeon Phi card and see how many cores it has by using the commands:

[host]$ ssh micX
[micX]$ cat /proc/cpuinfo | grep proc | tail -n 3
processor : 237
processor : 238
processor : 239

Where X is the mic number assigned to your group.

Now return to host to continue with the next exercise, using the command:

[micX]$ exit
[host]$

3.5 Run host test

First try running the simple OpenMP hello world application provided cpu_only.exe on the host.
Also, change the number of OpenMP threads to something sensible.

[host]$ export OMP_NUM_THREADS=6

[host]$./cpu_only.exe

Running on HOST

Hello from thread 0
Hello from thread 4
..
Hello from thread 3
Total number of threads used is 6
Maximum number of threads available is 6
================================

3.6 Run offload test

Now lets try running the offload application. It will a similar OpenMP region on the host, followed by an
OpenMP region which is offloaded to the Xeon Phi.

[host]$./offload.exe

Hello from HOST process 0 of 1
Hello from HOST thread 0 on process 0
..
Hello from HOST thread 2 on process 0

Number of HOST threads used = 6 on process 0
Max HOST threads available = 6 on process 0

4

Hello from XeonPhi thread = 0
Hello from XeonPhi thread = 4
..
Hello from XeonPhi thread = 2

Number of XeonPhi threads used = 6
Max Xeon Phi threads available = 6 on process 0

As you can see, the number of OpenMP threads on the Xeon Phi is automatically set to be the same
as that on the host (this may vary from setup to setup). To change this we must execute the following
commands:

[host]$ export MIC_ENV_PREFIX=MIC
[host]$ export MIC_OMP_NUM_THREADS=10

(The first command need only be run once.)

Now try running the offload application again.

[host]$./offload.exe

Hello from HOST process 0 of 1
..
Hello from HOST thread 5 on process 0

Number of HOST threads used = 6 on process 0
Max HOST threads available = 6 on process 0

Hello from XeonPhi thread = 0
..
Hello from XeonPhi thread = 1

Number of XeonPhi threads used = 10
Max Xeon Phi threads available = 10 on process 0

In cases where we are running a more complex code we may be interested to see statistics of how much we
utilised the Xeon Phi card vs the CPU. A handy tool for such quick feedback is the OFFLOAD_REPORT
environment variable.

[host]$ export OFFLOAD_REPORT=1

enables the output of a brief offload report. Running the offload.exe application again should now
give you additional output similar to:

[Offload] [MIC 0] [File] offload.c

5

[Offload] [MIC 0] [Line] 36
[Offload] [MIC 0] [Tag] Tag 0
[Offload] [HOST] [Tag 0] [CPU Time] 1.932612(seconds)
[Offload] [MIC 0] [Tag 0] [MIC Time] 0.039789(seconds)

3.7 Run native test

For the offload tests, everyone used the mic0 Xeon Phi card. For the native tests, again, each user should
ssh into their group’s assigned mic card.

[host]$ ssh micX
[micX]$ cd setup

Where X is the mic number assigned to your group.

Now we need to setup the environment for the mic card:

[micX]$ source /opt/intel/composer_xe_2015/mkl/bin/mklvars.sh mic
[micX]$ ulimit -s unlimited
[micX]$ source /opt/intel/impi/5.0.3.048/mic/bin/mpivars.sh

ALTERNATIVES:

Instead of sourcing Intel scripts manually, you could use a setup file such as the provided env_mic.sh
file (in the env folder) by executing:

[host]$ source env/env_mic.sh

Now execute the binary which has been compiled for the Xeon Phi:

[micX]$ export OMP_NUM_THREADS=32
[micX]$./native.exe
Running on Xeon Phi

Hello from thread 24
Hello from thread 5
..
..
Hello from thread 31
Total number of threads used is 32
Maximum number of threads available is 32
================================

Finally, to give you a better feel of the core/thread distribution, enable affinity information output using
the KMP_AFFINITY environment variable and re-run the native.exe application:

[micX]$ export KMP_AFFINITY=verbose
[micX]$./native
OMP: Info #204: KMP_AFFINITY: decoding x2APIC ids.
OMP: Info #205: KMP_AFFINITY: cpuid leaf 11 not supported - decoding legacy APIC ids.
OMP: Info #149: KMP_AFFINITY: Affinity capable, using global cpuid info
..
..

Which gives you a full report on the thread affinities for all cores and threads of the Xeon Phi card, given
your (default) affinity settings.

6

	Aims
	Introduction
	Instructions
	Log into COSMOS host and run commands
	Procedure for Mac and Linux users
	Procedure for Windows users

	Download and extract the exercise files
	Setup host environment
	Use some runtime tools to check mic status
	Run host test
	Run offload test
	Run native test

