
Xeon Phi Native Mode - Sharpen Exercise

Fiona Reid, Andrew Turner, Dominic Sloan-Murphy, David Henty, Adrian Jackson

April 30, 2015

Contents

1 Aims

The aim of this exercise is to get you compiling and running native mode applications on the Xeon Phi.
We will be using the COSMOS Xeon Phi machine to do this. You can find more details on COSMOS at:

• http://www.cosmos.damtp.cam.ac.uk/

The machine has 6 Xeon Phi cards labelledmic0up tomic5. Your demonstrators will tell you which card
you should use for this practical as we need spread the load evenly across the cards.

2 Introduction

In this exercise you will run a simple program, in serial and parallel on both the host machine and the
Xeon Phi, to sharpen the provided image file.

Using your provided guest account, you will:

1. log onto the COSMOS host nodes;

2. copy the source code from a central location to your account;

3. unpack the source code archive;

4. compile the source code to produce executable files for both the host and Xeon Phi;

5. run serial and parallel codes on the host node;

6. login to the Xeon Phi;

7. run serial and parallel native mode codes on the Xeon Phi node;

8. Investigate the performance of the Xeon Phi compared with the host.

Demonstrators will be on hand to help you as required. Please do ask questions if you do not understand
anything in the instructions - this is what the demonstrators are here for.

1

http://www.cosmos.damtp.cam.ac.uk/


3 Instructions

3.1 Log into COSMOS host and run commands

You should have been given a guest account ID – referred to generically here asz3XX – and password.
If you have not, please contact a demonstrator.

3.1.1 Procedure for Mac and Linux users

Open a command lineTerminaland enter the following command:

user@laptop$ ssh -X z3XX@microcosm.damtp.cam.ac.uk
Password:

you should be prompted to enter your password.

3.1.2 Procedure for Windows users

Windows does not generally have SSH installed by default so some extra work is required. You need to
download and install a SSH client application - PuTTY is a good choice:

• http://www.chiark.greenend.org.uk/~sgtatham/putty/.

When you start PuTTY you should be able to enter the COSMOS login address (microcosm.damtp.cam.ac.uk).
When you connect you will be prompted for your username and password.

By default, PuTTY does not send graphics back to your local machine. We will need this later for viewing
the sharpened image, so you should “Enable X11 Forwarding” which is an option in the “Category” menu
under “Connection -> SSH -> X11”. You will need to do this each time before you log in with PuTTy.

3.2 Download and extract the exercise files

Once you have logged into the host machine you need to obtain a copy of the source code. You can obtain
this usingwgetas follows:

wget https://www.archer.ac.uk/training/course-material/2015/04/
XeonPhi_EPCC/exercises/exercise2/sharpen_xeonphi.tar.gz

This program takes a fuzzy image and uses a simple algorithm to sharpen the image. A very basic parallel
version of the algorithm has been implemented which we will use in this exercise. There are a number of
versions of the sharpen program available:

C-SER Serial C version

F-SER Serial Fortran version

C-MPI Parallel C version using MPI

F-MPI Parallel Fortran version using MPI

C-OMP Parallel C version using OpenMP

F-OMP Parallel Fortran version using OpenMP

C-HYB Parallel C version using MPI and OpenMP

F-HYB Parallel Fortran version using MPI and OpenMP

2

http://www.chiark.greenend.org.uk/~sgtatham/putty/


We won’t use the hybrid MPI and OpenMP version in this practical but you may wish to experiment with
it in future.

To unpack the archive use:

[host]$ tar -xzvf sharpen_xeonphi.tar.gz
sharpen/C-SER/
sharpen/C-SER/filter.c
...
--snip--
...
sharpen/F-OMP/dosharpen.f90
sharpen/F-OMP/Makefile
sharpen/F-OMP/fuzzy.pgm
sharpen/setup.sh
sharpen/setup_mic.sh

If you are interested in the C examples move to theC-SERsubdirectory; for Fortran, move toF-SER. For
example:

[host]$ cd sharpen/C-SER

3.3 Compile the source code to produce an executable file for the host

We will first compile the serial version of the code for the host machine. The source files for this can
be found in theC-SERor F-SERdirectory depending on your choice of programming language. Each
directory contains a separate makefile for the host,Makefileand for the Xeon Phi,Makefile.mic. To build
the host version you can usemakeas follows:

[host]$ cd sharpen
source setup.sh

[host]$ cd sharpen/C-SER
[host]$ ls
cio.c filter.c Makefile sharpen.c submit.sh utilities.h
dosharpen.c fuzzy.pgm Makefile.mic sharpen.h utilities.c

[host]$ make
icc -openmp -g -DC_SERIAL_PRACTICAL -c sharpen.c
icc -openmp -g -DC_SERIAL_PRACTICAL -c dosharpen.c
icc -openmp -g -DC_SERIAL_PRACTICAL -c filter.c
icc -openmp -g -DC_SERIAL_PRACTICAL -c cio.c
icc -openmp -g -DC_SERIAL_PRACTICAL -c utilities.c
icc -openmp -g -DC_SERIAL_PRACTICAL -o sharpen sharpen.o dosharpen.o

filter.o cio.o utilities.o -lm
[host]$

The commandsource setup.shensures that the Intel compiler versions and MPI libraries, wrappers etc
are to your path. After building the code you should have an executable file calledsharpenwhich we will
run on COSMOS.

For the Fortran version, the process is exactly the same as above, except you should move to theF-SER
subdirectory and build the program there:

[host]$ cd sharpen/F-SER
[host]$ make
...

3



As before, this should produce asharpenexecutable.

Don’t worry about the C fileutilities.c – it is just providing an easy method for printing out various
information about the program at run time, and it is most easily implemented in C.

3.4 Running the serial version on the host

You can run this serial program directly on COSMOS, e.g.:

[host]$ ulimit -s unlimited
[host]$ cd sharpen/C-SER
[host]$ ./sharpen

Image sharpening code running in serial

Input file is: fuzzy.pgm
Image size is 564 x 770

Using a filter of size 17 x 17

Reading image file: fuzzy.pgm
... done

Starting calculation ...
Program on core 8-15
... finished

Writing output file: sharpened.pgm

... done

Calculation time was 7.549171 seconds
Overall run time was 7.714736 seconds

Remember to unlimit the stacksize withulimit -s unlimitedbefore running the code on the host otherwise
you’ll most likely get a segmentation fault when you run out of memory.

3.5 Viewing the images

To see the effect of the sharpening algorithm, you can view the images using thexview program.

[host]$ xview fuzzy.pgm
[host]$ xview sharpened.pgm

Type “q” in the image window to close the program.

To view the image you will need an X window client installed. Linux or Mac systems will generally have
such a program available, but Windows does not provide X windows functionality by default. There are
many X window systems available to install on Windows; we recommend Xming available at:

• http://sourceforge.net/projects/xming/

3.6 Compling the parallel versions of the code for the host

OpenMP and MPI versions of the the code can be found in theC-OMPandC-MPI directories respec-
tively. As with the serial version, these can be compiled withmake, e.g. to compile the MPI version of

4

http://sourceforge.net/projects/xming/


the code you would use:

[host]$ cd sharpen/C-MPI
[host]$ make
mpiicc -openmp -g -DC_MPI_PRACTICAL -c sharpen.c
mpiicc -openmp -g -DC_MPI_PRACTICAL -c dosharpen.c
mpiicc -openmp -g -DC_MPI_PRACTICAL -c filter.c
mpiicc -openmp -g -DC_MPI_PRACTICAL -c cio.c
mpiicc -openmp -g -DC_MPI_PRACTICAL -c utilities.c
mpiicc -openmp -g -DC_MPI_PRACTICAL -o sharpen sharpen.o dosharpen.o

filter.o cio.o utilities.o -lm

3.7 Running the parallel versions on the host

Normally parallel codes would be run via a batch system but for simplicity we will just run these intera-
tively on the host. To run the OpenMP version of the code you’ll need to set the number of threads via
OMP_NUM_THREADSand then run the executable as follows:

[host]$ cd sharpen/C-OMP
[host]$ export OMP_NUM_THREADS=4
[host]$ ./sharpen

Image sharpening code running on 4 thread(s)

Input file is: fuzzy.pgm
Image size is 564 x 770

Using a filter of size 17 x 17

Reading image file: fuzzy.pgm
... done

Starting calculation ...
Thread 0 on core 8-15
Thread 2 on core 8-15
Thread 1 on core 8-15
Thread 3 on core 8-15
... finished

Writing output file: sharpened.pgm

... done

Calculation time was 2.646630 seconds
Overall run time was 2.954357 seconds

To run the MPI version of the code on the host you need to usempirunto launch the job as follows:

[host]$ cd sharpen/C-MPI
[host]$ mpirun -np 8 ./sharpen

Image sharpening code running on 8 processor(s)

Input file is: fuzzy.pgm

5



Image size is 564 x 770

Using a filter of size 17 x 17

Reading image file: fuzzy.pgm
... done

Starting calculation ...
Rank 0 on core 8 of node <microcosm>
Rank 4 on core 12 of node <microcosm>
Rank 6 on core 14 of node <microcosm>
Rank 2 on core 10 of node <microcosm>
Rank 7 on core 15 of node <microcosm>
Rank 1 on core 9 of node <microcosm>
Rank 5 on core 13 of node <microcosm>
Rank 3 on core 11 of node <microcosm>
... finished

Writing output file: sharpened.pgm

... done

Calculation time was 1.921152 seconds
Overall run time was 2.266319 seconds

3.8 Compiling native mode binaries for the Xeon Phi

To compile code which will run in native mode on the Xeon Phi you just need to add the-mmicflag to
your compile/link flags. In each of the source directories you will find aMakefile.micfile which can be
used to generate a native mode binary for the Xeon Phi. E.g. to compile a native mode OpenMP binary
do the following:

[host]$ cd sharpen/C-OMP
[host]$ make -f Makefile.mic clean
[host]$ make -f Makefile.mic
icc -mmic -openmp -g -DC_OPENMP_PRACTICAL -c sharpen.c
icc -mmic -openmp -g -DC_OPENMP_PRACTICAL -c dosharpen.c
icc -mmic -openmp -g -DC_OPENMP_PRACTICAL -c filter.c
icc -mmic -openmp -g -DC_OPENMP_PRACTICAL -c cio.c
icc -mmic -openmp -g -DC_OPENMP_PRACTICAL -c utilities.c
icc -mmic -openmp -g -DC_OPENMP_PRACTICAL -o sharpen.mic sharpen.o dosharpen.o

filter.o cio.o utilities.o -lm

Note: if you’ve already built the host version then you’ll need to do a clean build (withmake -f Make-
file.mic clean) to remove the host specific object files. If you don’t remove these files then the compiler
will attempt to use the host specific object files which cannot be built into a Xeon Phi native mode
compatable binary. You’ll get an error message like:

[host]$ make -f Makefile.mic
icc -mmic -openmp -g -DC_OPENMP_PRACTICAL -o sharpen.mic sharpen.o

dosharpen.o filter.o cio.o utilities.o -lm
x86_64-k1om-linux-ld: i386:x86-64 architecture of input file

‘sharpen.o’ is incompatible with k1om output
... <SNIP>

6



The MPI native binary can be compiled in exactly the same way. You should ensure you’ve compiled
both the OpenMP and MPI native binaries before moving on to the next section.

3.9 Running native mode binaries on the Xeon Phi

To run in native mode on the Xeon Phi recall that you need to login to the co-processor, set up your
environment and run the native mode binary. Thus to run the OpenMP version of the image sharpening
code on 4 threads you would do:

[host]$ ssh micX
[mic0]$ source /opt/intel/composer_xe_2015/mkl/bin/mklvars.sh mic
[mic0]$ ulimit -s unlimited
[mic0]$ export OMP_NUM_THREADS=4
[mic0]$ cd /path_to_source_on_mic/sharpen/C-OMP
[mic0]$ ./sharpen.mic

Image sharpening code running on 4 thread(s)

Input file is: fuzzy.pgm
Image size is 564 x 770

Using a filter of size 17 x 17

Reading image file: fuzzy.pgm
... done

Starting calculation ...
Thread 0 on core 1
Thread 1 on core 5
Thread 3 on core 13
Thread 2 on core 9
... finished

Writing output file: sharpened.pgm

... done

Calculation time was 26.026030 seconds
Overall run time was 27.794996 seconds

Note: You’ll need to change theX in ssh micXto the co-processor card assigned to you for this practical.

To run the MPI version of the code on 4 MPI processes you would do:

[mic0]$ source /opt/intel/composer_xe_2015/mkl/bin/mklvars.sh mic
[mic0]$ source /opt/intel/impi/5.0.3.048/mic/bin/mpivars.sh
[mic0]$ ulimit -s unlimited
[mic0]$ cd /path_to_source_on_mic/sharpen/C-MPI
[mic0]$ mpirun -np 4 ./sharpen.mic

Image sharpening code running on 4 processor(s)

Input file is: fuzzy.pgm
Image size is 564 x 770

7



Using a filter of size 17 x 17

Reading image file: fuzzy.pgm
... done

Starting calculation ...
Rank 0 on core 1-60 of node <microcosm-mic0>
Rank 1 on core 61-120 of node <microcosm-mic0>
Rank 2 on core 121-180 of node <microcosm-mic0>
Rank 3 on core 0,181-239 of node <microcosm-mic0>
... finished

Writing output file: sharpened.pgm

... done

Calculation time was 24.507301 seconds
Overall run time was 26.272390 seconds

If you’ve already setup the environment and unlimited the stacksize when running the OpenMP binary
then you don’t need to re-run the first two commands. Alternatively you can use thesetup_mic.shscript
to setup the paths and unlimit the stacksize by running the command:

[mic0]$ cd sharpen
[mic0]$ source setup_mic.sh

You may have noticed that the MPI version of the code is compiled with the-openmpflag. This is because
we useomp_get_wtimetimer function to time the image sharpening code. This means you need to ensure
the OpenMP libraries are in your path on the Xeon Phi, i.e. you need to make sure you have sourced the
mklvars.sh micscript.

4 Comparing the performance of the host and Xeon Phi

You should now investigate how the performance of the Xeon Phi compares to that of the host. Ideally
you want to compare a fully populated (i.e. 16 OpenMP threads or 16 MPI processes) host node with a
fully populated Xeon Phi card (240 OpenMP threads or 240 MPI processes).

The tables at the end of this document may be be helpful in deciding what thread and processor counts
to run. The IO time can be obtained by taking the difference of the overall run time and the calculation
time. The total CPU time is the calculation time multiplied by the number of cores.

How does the IO time vary with thread or process count on the host and Xeon Phi? How does the 16
thread or process host version compare with using all 240 virtual cores on the Xeon Phi?

8



# Threads Overall run time Calculation time IO time Total CPU time

1
2
4
8
16

Table 1: Time taken by parallel image processing code on the host: OpenMP version

# Processes Overall run time Calculation time IO time Total CPU time

1
2
4
8
16

Table 2: Time taken by parallel image processing code on the host: MPI version

# Threads Overall run time Calculation time IO time Total CPU time

4
16
30
60
120
180
240

Table 3: Time taken by parallel image processing code on the Xeon Phi: OpenMP version

# Processes Overall run time Calculation time IO time Total CPU time

4
16
30
60
120
180
240

Table 4: Time taken by parallel image processing code on the Xeon Phi: MPI version

9


