NATIVE MODE
PORTING CASE STUDY

Adrian Jackson
adrianj@epcc.ed.ac.uk

epcc

Native mode porting

- Porting large FORTRAN codes

- No code changes
- Re-compile
- Add linking to MKL

- MP1 parallelised code
- Some hybrid or OpenMP (small numbers of threads)

- Native mode to reduce code modifications
required

CPCC

e
GS2

- Flux-tube gyrokinetic code
- Initial value code

- Solves the gyrokinetic equations for perturbed distribution functions
together with Maxwell’'s equations for the turbulent electric and
magnetic fields

- Linear (fully implicit) and Non-linear (dealiased pseudo-spectral)
collisional and field terms

- 5D space — 3 spatial, 2 velocity
- Different species of charged particles

- Advancement of time in Fourier space

- Non-linear term calculated in position space
- Requires FFTs
- FFTs only in two spatial dimensions perpendicular to the magnetic field

- Heavily dominated by MPI time at scale
- Especially with collisions

CPCC

New hybrid implementation

- Funneled communication model
- OpenMP done at a high level in the code

- Single parallel region per time step
- Better can be achieved (single parallel region per run)

- Some code excluded but computationally
expensive code all hybridised

CPCC

-
Port to Xeon Phi

- Pure MPI code performance:

- ARCHER (2x12 core Xeon E5-2697, 16 MPI
processes): 3.08 minutes

- Host (2x8 core Xeon E5-2650, 16 MPI processes): 4.64
minutes

-1 Phi (176 MPI processes): 7.34 minutes
- 1 Phi (235 MPI processes): 6.77 minutes
- 2 Phis (352 MPI processes): 47.71 minutes

- Hybrid code performance

- 1 Phi (80 MPI processes, 3 threads each): 7.95 minutes

- 1 Phi (120 MPI processes, 2 threads each): 7.07
minutes

CPCC

Complex number optimisation

- Much of GS2 uses FORTRAN Complex numbers

- However, often imaginary and real parts are treated
separately

- Can affect vectorisation performance

- Work underway to replace with separate arrays

- Initial performance numbers demonstrate performance
iImprovement on Xeon Phi

- 2-3% for a single routine when using separate arrays

CPCC

e
COSA

- Fluid dynamics code
- Harmonic balance (frequency domain approach)
- Unsteady navier-stokes solver
- Optimise performance of turbo-machinery like problems
- Multi-grid, multi-level, multi-block
code
- Parallelised with MPI and with
MPI1+OpenMP

uuuuu

L epcc

Runtiime (seconds)

COSA Hybrid Performance

10000

—&— MPI

—@— Hybrid (4 threads)

—®— Hybrid (3 threads)

1000 —@— Hybrid (2 threads)

—@— Hybrid (6 threads)

—®— MPI Scaling if continued perfectly
—@— MPI Ideal Scaling

100

100 1000 10000

Tasks (either MPI processes or MPI processes x OpenMP Threads)

CPCC

Xeon Phi Performance

Configuration Number of hardware Occupancy Runtime (s)
elements

8 MPI processes 1/2 8/16 2105.71
16 MPI processes 2/2 16/16 1272.54
64 MPI processes 1/2 64/240 3874.45
64 MPI processes 3 1/2 192/240 2963.58
OpenMP threads

118 MPI processes 2/2 472/480 2118.05
4 OpenMP threads

128 MPI processes 2/2 384/480 1759.30
3 OpenMP threads

. Hardware:
— 2 x Xeon Sandy Bridge 8-core E5-2650 2.00GHz
— 2 x Xeon Phi 5110P 60-core 1.05GHz

. Test case

— 256 blocks
— Maximum 7 OpenMP threads

CPCC

Serial optimisations

- Manual removal of floating point loop invariants divisions
do ipde = 1,4
facl = fact * vol(i,7j)/dt

end do

recip = 1.0d / dt
do ipde = 1,4

factl = fact * vol(i,j) * recip
end do

- Provides ~15% speedup so far on Xeon Phi
- No real benefit noticed on host
- Changes the results

CPCC

e
/O

- [dentified that reading input is now significant
overhead for this code
- Output is done using MPI-1/O, reading is done serially
- File locking overhead grows with process count
- Large cases ~GB input files

- Parallelised reading data
- Reduce file locking and serial parts of the code

- One or two orders of magnitude improvement in
performance at large process counts
- 1 minute down to 5 seconds

CPCC

Configuration Number of hardware Occupancy Runtime (s)
elements

8 MPI processes 8/16 2105.71

16 MPI processes 2/2 16/16 1272.54

128 MPI processes 1/2 128/240 1903.51

64 MPI processes 3 1/2 192/240 2214.56

OpenMP threads

128 MPI processes 2/2 384/480 1503.45

3 OpenMP threads

- Further serial optimisation
- Cache blocking

- 3D version of the code now developed

- Porting optimised and hybrid version to this
SPCC|

