
Image Sharpening
Example

Running a simple parallel program

Aims (i)
•  To familiarise yourself with running parallel programs

•  To run a real parallel code (that does file I/O)
•  on different numbers of cores
•  measure the time taken
•  observe increase in performance (Amdahl’s law? – see later)

•  Acknowledgements
•  algorithm, diagrams and images taken from:
•  Hypermedia Image Processing Reference, Bob Fisher, Simon

Perkins, Ashley Walker and Erik Wolfart, Department of Artificial
Intelligence, University of Edinburgh (1994)

Aims (ii)
•  To get you running on ARCHER

•  To sort out all the practical details
•  usernames
•  passwords
•  graphics
•  transferring files
•  using the batch system
•  idiosyncrasies of your Windows / Mac / Linux laptop
•  …

•  Please ask for assistance if you need it!
•  demonstrators are here to help with all aspects of course

Image sharpening
•  Images can be fuzzy for two main reasons

•  random noise
•  blurring

•  Aim to improve quality by
•  smoothing to remove noise
•  detecting edges
•  sharpening up the image with the edges

edges fuzzy sharp

Technicalities
•  Each pixel replaced by a weighted average of its neighbours

•  weighted by a 2D Gaussian
•  averaged over a square region

•  we will use:
•  Gaussian width of 1.4
•  a 17x17 square

•  then apply a Laplacian
•  this detects edges
•  a 2D second-derivative ∇2

•  Combine both operations
•  produces a single convolution filter

Implementation

•  For over every pixel in the image
•  loop over all pixels in the 17x17 square surrounding it
•  add in the value of the pixel weighted by a filter

•  This gives the edges
•  add the edges back into the original image with some scaling factor

•  we use 2.0
•  rescale the sharpened image so pixels lie in the range 0 - 255

Parallelisation
•  Each pixel can be processed independently
•  A master process reads the image
•  Broadcast the whole image to every processor
•  Each processor computes edges for a subset of pixels:

•  scan the image line by line
•  with four processors, each processor computes every fourth pixel

•  Combine the edges back onto a master process
•  add back into original image and rescale
•  save to disk

•  Reports two times:
•  calculation time for just computing edges on each processor
•  overall time for the whole program including IO

Parallelisation

1 2 3 4 1

2 3 4 1 2

3

Technicalities
•  Supply a serial version for reference
•  Parallelisation is achieved using message-passing model
•  Implemented using MPI

•  the Message-Passing Interface

•  Another version parallelised using shared-variables model
•  Implemented using OpenMP

•  HPC standard for threaded programming
•  for interest - not critical to this exercise

•  These concepts will be explained later in the course …

PBS job submission scripts
#PBS -N sharpen
#PBS -l select=1
now stuff that actually executes
…
aprun -n 4 ./sharpen

how many cores to
run on – remember
24 cores per node!

parallel job launcher

how many nodes
you want

program to run

name for PBS
batch job

Compiling and Running

•  We provide a tar file with code (C or Fortran) and image

•  You should:
•  copy tar file it to your local account
•  unpack it
•  compile it
•  run it on the back end using appropriate batch scripts
•  view the input and output images using display program

•  note the times for different numbers of processors
•  can you interpret them?

•  See the exercise sheet for full details!

Get started!

•  Go to the course page on the ARCHER website:

•  http://tinyurl.com/qx5mx3m

•  You should:
•  Open Exercise 1: Handout
•  Follow instructions to logon to ARCHER
•  Copy the source code from the ARCHER website

•  See the exercise sheet for full details!

