
Building Blocks
CPUs, Memory and Accelerators

Outline
• Computer layout

•  CPU and Memory
•  What does performance depend on?
•  Limits to performance

• Silicon-level parallelism
•  Single Instruction Multiple Data (SIMD/Vector)
•  Multicore
•  Symmetric Multi-threading (SMT)

• Accelerators (GPGPU and Xeon Phi)
•  What are they good for?

Computer Layout
How do all the bits interact and which ones matter?

Anatomy of a computer

Data Access
• Disk access is slow

•  a few hundreds of Megabytes/second

•  Large memory sizes allow us to keep data in memory
•  but memory access is slow
•  a few tens of Gigabytes/second

• Store data in fast cache memory
•  cache access much faster: hundreds of Gigabytes per second
•  limited size: a few Megabytes at most

Performance
•  The performance (time to solution) on a single computer

can depend on:
•  Clock speed – how fast the processor is
•  Floating point unit – how many operands can be operated on and

what operations can be performed?
•  Memory latency – what is the delay in accessing the data?
•  Memory bandwidth – how fast can we stream data from memory?
•  Input/Output (IO) to storage – how quickly can we access

persistent data (files)?

Performance (cont.)
• Application performance often described as:

•  Compute bound
•  Memory bound
•  IO bound
•  (Communication bound – more on this later…)

•  For computational science
•  most calculations are limited by memory bandwidth
•  processor can calculate much faster than it can access data

Silicon-level parallelism
What does Moore’s Law mean anyway?

Moore’s Law

• Number of
transistors
doubles every
18-24 months
•  enabled by

advances in
semiconductor
technology and
manufacturing
processes

What to do with all those transistors?
• For over 3 decades until early 2000’s

•  more complicated processors
•  bigger caches
•  faster clock speeds

• Clock rate increases as inter-transistor distances decrease
•  so performance doubled every 18-24 months

• Came to a grinding halt about a decade ago
•  reached power and heat limitations
•  who wants a laptop that runs for an hour and scorches your trousers!

Alternative approaches
•  Introduce parallelism into the processor itself

•  vector instructions
•  simultaneous multi-threading
•  multicore

Single Instruction Multiple Data (SIMD)
•  For example, vector addition:

•  single instruction adds 4 numbers
•  potential for 4 times the performance

Symmetric Multi-threading (SMT)
• Some hardware supports running multiple instruction
streams simultaneously on the same processor, e.g.
•  stream 1: loading data from memory
•  stream 2: multiplying two floating-point numbers together

• Known as Symmetric Multi-threading (SMT) or
hyperthreading

• Threading in this case can be a misnomer as it can refer
to processes as well as threads

•  These are hardware threads, not software threads.
•  Intel Xeon supports 2-way SMT
•  IBM BlueGene/Q 4-way SMT

Multicore
• Twice the number of transistors gives 2 choices

•  a new more complicated processor with twice the clock speed
•  two versions of the old processor with the same clock speed

• The second option is more power efficient
•  and now the only option as we have reached heat/power limits

• Effectively two independent processors
• … except they can share cache
•  commonly called “cores”

Multicore

• Cores share path to memory
•  SIMD instructions + multicore make

this an increasing bottleneck!

Intel Xeon E5-2600 – 8 cores HT

What is a processor?
•  To a programmer

•  the thing that runs my program
•  i.e. a single core of a multicore processor

•  To a hardware person
•  the thing you plug in to a socket on the motherboard
•  i.e. an entire multicore processor

• Some ambiguity
•  in this course we will talk about cores and sockets
•  try and avoid using “processor”

Chip types and manufacturers
•  x86 – Intel and AMD

•  “PC” commodity processors, SIMD (SSE, AVX) FPU, multicore,
SMT (Intel); Intel currently dominates the HPC space.

• Power – IBM
•  Used in high-end HPC, high clock speed (direct water cooled),

SIMD FPU, multicore, SMT; not widespread anymore.
• PowerPC – IBM BlueGene

•  Low clock speed, SIMD FPU, multicore, high level of SMT.
• SPARC – Fujitsu
• ARM – Lots of manufacturers

•  Not yet relevant to HPC (weak FP Unit)

Accelerators
Go-faster stripes

Anatomy
• An Accelerator is a additional resource that can be used

to off-load heavy floating-point calculation
•  additional processing engine attached to the standard processor
•  has its own floating point units and memory

AMD 12-core CPU
• Not much space on CPU is dedicated to computation

=	
 compute	
 unit	

(=	
 core)	

NVIDIA Fermi GPU
• GPU dedicates much

more space to
computation
•  At expense of caches,

controllers, sophistication etc

=	
 compute	
 unit	

(=	
 SM	
 	

	
 =	
 32	
 CUDA	
 cores)	

Intel Xeon Phi
• As does Xeon Phi

=	
 compute	
 	

unit	

(=	
 core)	

Memory
•  For most HPC applications, performance is very sensitive to memory

bandwidth
•  GPUs and Intel Phi both use Graphics memory: much higher

bandwidth than standard CPU memory

CPUs	
 use	
 DRAM	
 GPUs	
 and	
 Xeon	
 Phi	
 use	
 Graphics	

DRAM	

Summary - What is automatic?
• Which features are managed by hardware/software and

which does the user/programmer control?
•  Cache and memory – automatically managed
•  SIMD/Vector parallelism – automatically produced by compiler
•  SMT – automatically managed by operating system
•  Multicore parallelism – manually specified by the user
•  Use of accelerators – manually specified by the user

