
Building Blocks
Operating Systems, Processes, Threads

Outline
• What does an Operating System (OS) do?

•  OS types in HPC
•  The Command Line

• Processes
•  Threads

•  Threads on accelerators

• OS performance optimisation
•  Why is the OS bad for performance?
•  Approaches to improving OS performance

Operating Systems
What do they do? Which ones are used for HPC?

Operating System (OS)
•  The OS is responsible for orchestrating access to the

hardware by applications.
•  Which applications are running at any one time?
•  How is the memory allocated and de-allocated?
•  How is the file-system accessed?
•  Who has authority to access which resources?

• Running applications are controlled through the concepts
of processes and threads.
•  an applications / program is a single process
•  which may have multiple threads

OS’s for HPC
• HPC systems have always used Unix

•  vendors (DEC, SUN, Cray, IBM, SGI, …) all wrote their own version
• Now dominated by Linux (of various flavours)

•  Most HPC vendors modify a commercial Linux distro (RedHat or
SUSe) and tailor to their own system.

•  Many commodity clusters run a free Linux distro (Scientific Linux is
particularly popular).

• Only IBM Power systems still use vendor Unix (AIX)
•  11 HPC systems in the November 2013 Top500 do not use Linux

• Windows HPC used on a small number of HPC systems
•  2 HPC systems in the November 2013 Top500 list use Windows

The Command Line
•  HPC sector is dominated by Linux
•  Interaction almost always through Linux command line.

•  e.g. which two files or folders are taking up the most space?

 user@hpcsystem> du –sm * | sort –n | tail
-2
•  often a reasonably large barrier to new people adopting HPC.

•  For any serious use of HPC you will have to learn to use the
command line.
•  often also useful for using command line on your own laptop/PC

•  Should also learn basic operation of in-terminal text editor
•  vi is always available

•  emacs is another popular choice

Processes

Processes
•  Each application is a separate process in the OS

•  a process has its own memory space which is not accessible by other
running process.

•  processes are ring-fenced from each other: if web browser crashes, it
can’t scribble over document stored in the memory your word processor

•  Each process is scheduled to run by the OS

OS and multicore
•  “Multicore parallelism – manually specified by the user”

•  what’s the use of a multicore laptop if I run non-parallel code?

• OS’s have always scheduled multiple processes
•  regularly check which process is running
•  give another process a chance to run for a while
•  rapid process switching gives illusion applications run concurrently

even on a single core

• With a multicore processor
•  multiple processes can really run at the same time

Process Scheduling
•  The OS has responsibility for interrupting a process and granting

the core to another process
•  Which process is selected is determined by the scheduling policy
•  Interrupt happens at regular intervals (every 0.01seconds is typical)
•  Process selected should have processing work to do

•  On a quad core processor, OS schedules 4 processes at once
•  Some hardware supports multiple processes per core

•  Known as Symmetric Multi-threading (SMT)
•  Usually appears to the OS as an additional core to use for scheduling

•  Process scheduling can be a hindrance to performance
•  in HPC, typically want a single user process per core

Threads
Sharing memory

Threads
•  For many applications each process has a single thread…

•  … but a single process can contain multiple threads
•  each thread is like a child process contained within parent process

Threads (cont.)
•  All threads in a process have access to the same memory

•  the memory of the parent process
•  Threads are a useful programming model pre-dating multicore

•  e.g. a computer game (a process) creates asynchronous threads
•  one thread controls the spaceship
•  another controls the missile
•  another deals with keyboard input
•  …

•  but all threads update the same game memory, e.g. the screen

•  OS scheduling policy is aware of threads
•  ensures all of the game operations progress
•  switching between threads usually quicker than between processes

Threads and multicore
• With multiple cores

•  multiple threads can operate at the same time on the same data to
speed up applications

• Cannot scale beyond the number of cores managed by the
operating system
•  to share memory, threads must belong to the same parent process

•  In HPC terms cannot scale beyond a single node
•  using multiple nodes requires multiple processes
•  this requires inter-process communication – see later

Shared-memory concepts
• Process has an array of size eight

•  each thread operates on half the data; potential for 2x speedup

Threads and Accelerators
•  The Accelerator programming model generally requires a

huge number of threads to provide efficient usage
•  Oversubscription of the accelerator by threads is encouraged
•  Hardware supports fast switching of execution of threads

•  switch off a thread when it is waiting for data from memory
•  switch on a thread that is ready to do computation
•  try and hide memory latency

•  As GPGPUs can have 1000’s of computing elements,
oversubscription can be difficult!

•  Threading is becoming more and more important on
modern HPC machines

OS Optimisation
How do vendors get performance?

Compute node OS
• On the largest supercomputers the compute nodes often

run an optimised OS to improve performance
•  Interactive (front-end) nodes usually run a full OS

• How is the OS optimised?
•  Remove features that are not needed (e.g. USB support)
•  Restrict scheduling flexibility and increase interrupt period
•  Bind processes and threads to specific cores
•  Remove support for virtual memory (paging)
•  …

