
Parallel Programming with OpenSHMEM: Exercises

Introduction

The aim of these exercises is to familiarise you with writing parallel programs using OpenSHMEM
commands. In particular, emphasis is placed on the use of synchronisation calls in ensuring correctness.

Logging on

You should already have access to an account on ARCHER, the UK National Supercomputer, which is a
large Cray XC30 system. To log on and enable display of graphics use: ssh -X login.archer.ac.uk

Obtaining the exercises

The exercises are supplied as a single compressed tar file called synchronisation.tar.gz – this
can be retrieved from the ARCHER course web pages using wget.

Unpack the tar file using tar xvf synchronisation.tar.gz on ARCHER. You should use the
Lustre /work/ file system rather than your home directory.

Code notes

There are two directories in the exercise package: templates and solutions. These each contain
separate subdirectories for Fortran and C versions of the exercise code. You are provided with sample
input files and reference output files, and a source file pgmio.f90/pgmio.c which contains a module
with simple routines for reading and writing PGM pictures.

You are also given template codes which provide a convenient framework for completing each exercise.
These should compile and run as supplied, but will not produce the correct output as they generally
contain useful variable and array definitions but only a small amount of actual code. In particular, they
will not have any synchronisation in them so may not work correctly on multiple PEs. The solutions,
however, are full working codes which are based on the templates.

We recommend that you start from the templates, at least for the initial exercises. However, they are
just suggestions on how to tackle the exercises and take a very simple approach – feel free to write the
solutions in your own way if you wish. For example, you might prefer to use allocatable arrays rather
than the static definitions proposed in the template, taking care to ensure symmetic memory is used as
required.

Compilation

The code can be built using the Cray compiler suite, the default on ARCHER. To ensure the appropriate
build paths are set, the cray-shmem module must be loaded prior to compilation.
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module load cray-shmem

For later exercises that read or write PGM files, you will need to compile the supplied pgmio file first
then include it in subsequent compilations.

Linking can be quite slow on Lustre so do not be surprised if compilation takes ten seconds or more.

Required commands are as follows:

Fortran

To create an executable ex1a from the file ex1a.f90:

ftn -o ex1a ex1a.f90

To build and include pgmio.f90:

ftn -c pgmio.f90
ftn -o ex1b ex1b.f90 pgmio.o

C

To create an executable ex1a from the file ex1a.c:

cc -o ex1a ex1a.c

To build and include pgmio.c:

cc -c pgmio.c
cc -o ex1b ex1b.c pgmio.o

Execution

You may run the code by submitting jobs to the PBS batch system. You are given a template batch script
called ex1a_archer.pbs in the ex1 subdirectory within templates:

#!/bin/bash --login
#PBS -A y14
#PBS -l select=1
#PBS -l walltime=00:01:00
#PBS -j oe

NPROC=8
NTASK=8

# change directory to where the job was submitted from

cd $PBS_O_WORKDIR

echo "Starting job $PBS_JOBID at ‘date‘"

aprun -n $NPROC -N $NTASK ./ex1a

echo "Finished job $PBS_JOBID at ‘date‘"
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This will run the executable ex1a using 8 processing elements (PEs) with a maximum runtime of 1
minute.

The total number of PEs is set using the NPROC variable, which is directly linked to the numerical
argument of aprun’s -n option. The number of PEs per node can be set using the NPROC variable,
similarly linked to the -N argument.

For long runs you may have to increase the wallclock time.

When you copy this script to run other jobs, make sure you change the name of the executable supplied
to aprun.

Submit to the batch system using qsub ex1a_archer.pbs. Once the job has finished running, the
output and any errors will appear in a file called ex1a_archer.pbs.oXXXXX, where XXXXX is a
unique job number assigned by PBS. You can follow the progress of your jobs using qstat -u $USER.

During the course we have set up a high-priority queue. This can be selected as follows:

qsub -q course1 ex1a_archer.pbs

This reservation is available only for the duration of this course.

Viewing PGM pictures

You can view the output PGM pictures using the display program from the Image Magick suite:

display output.pgm
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Exercise 1: Hello World

The aim of this initial exercise is to ensure you can compile and run simple SHMEM programs on
your target platform. You will also do some basic parallel operations involving communication (and
synchronisation) between different PEs.

Header files shmem.fh (Fortran) or shmem.h (C) must be included to make available the required
SHMEM declarations and definitions.

(a) Use the provided ex1a template to aid you in writing a simple program where each PE, initialises
shmem (using shmem_init()) prints out its index (using shmem_my_pe()) and a single master
PE, e.g. PE number 0, prints out the total number of PEs (using shmem_n_pes()) before all PEs
finalise (using shmem_finalize()). Compile and run the program on different numbers of PEs.
Note that, despite convention, SHMEM PEs start from 0 rather than 1 even in Fortran.

(b) The template code ex1b defines an array to store a picture which is written to file for subsequent
viewing (we will build on this in later exercises). For simplicity, the number of PEs is set in the code
– we must therefore check at runtime that the actual number of PEs is equal to this value. In a real
program you would probably use allocatables and dynamically create arrays of the appropriate size.
However, using a compile-time parameter makes it easier to declare arrays of the right dimensions at
the expense of having to recompile for different numbers of PEs.

Extend the program to:

• Declare a second array smallpic to allow bigpic(nx, ny) to be shared across PEs.

Fortran: use smallpic(nx, nylocal) and distribute over the y-dimension.

C: use smallpic(nxlocal, ny) and distribute over the x-dimension.

See the Appendix for more information on picture decomposition.

• Initialise smallpic on each PE to be equal to shmem_my_pe().

• On the master, copy each piece of smallpic from the other PEs to the appropriate location
in bigpic.

• Write the resulting picture on the master.

• View the result.

You will need to put in synchronisation to ensure that the local arrays are initialised before they are
copied back by the master. What happens if you omit this synchronisation?

(c) As an additional exercise, have each PE write its data to the correct part of bigpic on the master.
You may need to introduce additional synchronisation points.

4



Exercise 2: Edge Detection

The aim of this exercise is to illustrate how parallel halo-swapping algorithms can be implemented using
SHMEM functions. We will do this by implementing a simple graphics-processing method for detecting
the edges of features contained in a picture.

For simplicity, we define the edges of a picture by comparing the values of each pixel to its four nearest
neighbours:

edge(i, j) = pic(i− 1, j) + pic(i + 1, j) + pic(i, j − 1) + pic(i, j + 1)− 4 pic(i, j)

If a pixel has the same value as its four surrounding neighbours (i.e. no edge) then the value of edge(i, j)
will be zero. If the pixel is very different from its four neighbours (i.e. a possible edge) then edge(i, j)
will be large in magnitude. If you are familiar with the discretisation of partial differential equations, you
will recognise that edge is the second derivative of pic.

We will always consider i and j to lie in the range 1, 2, . . . nx and 1, 2, . . . ny respectively. Pixels that lie
outside this range (e.g. pic(i, 0) or pic(nx + 1, j)) are set to zero.

(a) The template ex2a simply reads in a picture and writes it out again. Note that the arrays have been
extended in each dimension to accommodate the boundary conditions – in the serial program, we
can implement the boundary conditions by setting these halos to zero. You should take care that
computation only take place on the interior of the pictures, e.g. loops should start at 1 and not 0.

Extend this to:

• Use the approach of the first exercise to scatter the picture to oldpic on multiple PEs, copy
to newpic, and then gather newpic back to bigpic on the master. In the template, the
bigpic array is deliberately overwritten immediately after input to help you in verifying this
scatter/gather operation.

• Implement the edge detection method above to compute the edges in newpic based on the
input stored in oldpic, and look at the output picture. You should compare to the reference
picture reference.pgm. Without halo-swapping, the result will not be entirely correct.
However, the output should look the same everywhere except at the image boundaries where
you will see artifacts.

• In parallel we must populate the halos with data from neighbouring PEs prior to edge detection,
e.g. copy the upper halo from the upward neighbouring image etc.

Fortran

call shmem_double_get(oldpic(1,nylocal+1),oldpic(1,1),nxlocal,(mype+1))
call shmem_double_get(oldpic(1,0),oldpic(1,nylocal),nxlocal,(mype-1))

C

shmem_double_get(&oldpic[nxlocal+1][1],&oldpic[1][1],nylocal,(mype+1));
shmem_double_get(&oldpic[0][1],&oldpic[nxlocal][1],nylocal,(mype-1));

You should ensure that you introduce appropriate synchronisation, and that the first and last
PEs do not attempt to access non-existent neighbouring PEs.

• Run the code on multiple PEs and check that it works correctly. Note that incorrect synchro-
nisation can lead to quite subtle errors so you should compare your result with the reference
output in addition to performing a visual check. A compare.sh script has been provided for
convenience:

./compare.sh output.pgm reference.pgm
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This script peforms a diff which ignores the pgm header, white space and line breaks to
ensure only the picture data is compared. The command should give no output if the pictures
match.

(b) Although edge detection can be parallelised as above, it only requires a single pass of the picture
and is therefore too simple and fast an operation to show any useful parallel speedup. However, it
is actually possible to do the inverse operation, i.e. to reconstruct the initial picture from its edges.
This requires multiple iterations, and so might run significantly faster on multiple images when
parallelised.

You are supplied with an input edges file edge360x240.pgm, and you should be able to recon-
struct the original picture as follows:

• define a new array called edge

• read the initial edges data file into bigpic

• zero the arrays oldpic, newpic and edge

• scatter bigpic to edge and set oldpic = edge

• repeat for many iterations:

– loop over i = 1, 2 . . . nx; j = 1, 2, . . . ny

newpic(i, j) =
1

4
{ oldpic(i− 1, j) + oldpic(i + 1, j) + oldpic(i, j − 1) + oldpic(i, j + 1)− edge(i, j) }

– end loop

– set oldpic = newpic

• end loop over iterations

• write out the final picture as before

For information, this is the Jacobi algorithm for solving the 2D Poisson equation∇2pic = edge.

For verification, compare your output after 100 iterations to reference100.pgm. Again, incor-
rect synchronisation can lead to errors that may not be immediately visible by eye so you should also
use compare.sh to inspect the two pictures. You should start to see the original picture emerg-
ing after around 1,000 iterations; after 100,000 it should be practically indistinguishable from the
original.

(c) Rather than running for a fixed number of iterations, it is better to stop when the output picture has
converged to some tolerance, i.e. when it changes very little between each iteration. We can quantify
this by computing ∆ defined by:

∆2 =
1

nx× ny

nx ; ny∑
i=1;j=1

(newpic(i, j)− oldpic(i, j))2

and stopping when ∆ is less than some tolerance, e.g. 0.1.

This can be computed locally on each PE, then the partial results summed over PEs. Write a subrou-
tine or function that globally sums private double precision numbers by gathering them on a single
PE, adding them together and then distributing the result across PEs.

(d) Common collective operations such as a global sum have optimised implementations provided by
the SHMEM library. In this specific environment,

call shmem_real8_sum_to_all(target, source, nreduce, PE_start,
logPE_stride, PE_size, pWrk, pSync)
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can be used to perform the sum of double precision numbers in Fortran. In C, the:

void shmem_double_sum_to_all(double *target, double *source,
size_t nreduce, int PE_start, int logPE_stride, int PE_size,
double *pWrk, long *pSync)

function can be used.

Use a collective function to replace the global sum subroutine/function. Recall the definitions of
pWrk and pSync (from the Cray SHMEM man pages):

pWrk A symmetric work array. The pWrk argument must have the same
data type as target.

In C/C++, this contains max(nreduce/2+1,
_SHMEM_REDUCE_MIN_WRKDATA_SIZE) elements.

In Fortran, this contains max(nreduce/2+1,
SHMEM_REDUCE_MIN_WRKDATA_SIZE) elements.

pSync A symmetric work array.

In C/C++, pSync is of type long and size
_SHMEM_REDUCE_SYNC_SIZE.

In Fortran, pSync is of type integer and size
SHMEM_REDUCE_SYNC_SIZE. It must be a default integer value.

Every element of this array must be initialized with the
value _SHMEM_SYNC_VALUE (in C/C++) or SHMEM_SYNC_VALUE (in
Fortran) before any of the PEs in the active set enter the
reduction routine.

(e) Rather than using global synchronisation, try using the routines shmem_fence() and shmem_quiet()
to use pairwise synchronisation between neighbours when swapping the halos.

(f) Use a larger picture (as supplied) and time your program to measure the speedups obtained. Note
that you may need to reduce the number of iterations to get sensible runtimes. It is likely that the
computation of ∆ will prevent the code from scaling: you can either run for a fixed number of
iterations, or only compute ∆ periodically, e.g. every 100 iterations.
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Appendix: Array layouts for pictures

The supplied IO routines display the arrays as pictures using an x-y coordinate system, i.e. the first index
i is taken as the x-coordinate, the second index j as the y-coordinate. This convention is also used in
the solutions when defining what neighbouring images are “up” and “down”.

Here are some pictures of the coordinate systems and possible decompositions as used in the templates.

8


