
SINGLE-SIDED PGAS

COMMUNICATIONS

LIBRARIES
Advanced use of OpenSHMEM

2

Outline

• Point-to-point synchronisation

• Collectives

• Strided transfers

• Dynamic symmetric memory allocation

• Locks and atomic updates

Point-to-point synchronisation

• Barrier synchronisation works in simple cases, but …

• Performance issues

• will not scale to large numbers of PEs

• overkill in many situations

• e.g. in traffic model, only need to synchronise with neighbours

• May not be sensible to use barriers

• what if communications is only between a few PEs?

• why should all PEs wait when most are not communicating?

 4

2) Pairwise Model

• Useful when comms pattern is known in advance

• Implemented via library routines and/or flag variables

• More complicated model

• Closer to message-passing than previous collective approach

• But can be more efficient and flexible

Process A Process B Process C

START(B)

POST({A,C})

START(B)

COMPLETE COMPLETE

WAIT

OpenSHMEM idiom

• Origin PE

• perform communication

• write a flag variable to indicate completion

• Remote PE

• wait until flag variable is written

• can then access data (put) or modify buffer (get)

• Seems simple but …

• how do we make sure the flag arrives after the data (for put)?

• how do we make sure that the flag is reread from memory at the

remote PE and not optimised away by the compiler?

 6

Fence and wait

• Origin PE

put(target,source,len,remote_pe)

shmem_fence()

put(flag,flagvalue,len,remote_pe)

• Remote PE (assume flag is initialised to defaultvalue)

shmem_wait(flag, defaultvalue)

Order of arrival not guaranteed,

e.g. dynamic routing on XC30

Ensures ordering of puts to
remote_pe before and after fence

Simple spin-loop may be optimised away

Wait until flag differs
from defaultvalue

Notes

• Ensuring initialisation of flag may require synchronisation

• Can also encode information in flag

• e.g. initialise to -1

• write the identifier of the origin PE to flag

• remote_pe now knows where the data came from

• Fence works pairwise between PEs

• can also call shmem_quiet()

• waits until all outstanding puts from origin have completed

• not usually needed

• Not sufficient to have volatile flag (in C)

 8

Flagging requires separate put

• Origin PE: int source[N+1];

initialize_data(source, N)

source[N] = 1

put(target,source,N+1,remote_pe)

• Remote PE: int target[N+1];

// assume previous initialisation target[N] = -1

shmem_wait(target[N], -1)

• Incorrect!

• no guarantee of order of data arrival

• even within a single put call

Try to put flag at end of data

Send data and flag together

Assume arrival of flag means

arrival of data

Collectives

• Many collective patterns recur in parallel codes

• broadcast

• global sum

• …

• OpenSHMEM provides higher-level routines

• analogous to MPI collectives …

• … but harder to use!

• Issues

• user must provide (and maybe initialise) various workspace buffers

• only certain subsets can be specified

• synchronisation issues between calls

 10

Example: global sum of double

void shmem_double_sum_to_all(double *target, double *source,

int nreduce, int PE_start, int logPE_stride, int PE_size,

double *pWrk, long *pSync);

• Parameters

• target: output buffer (symmetric storage)

• source: input buffer (symmetric storage)

• nreduce: number of doubles to reduce (i.e. size of source and target)

• PE_start, logPE_stride, PE_size: active set of PEs taking part

• pWrk: symmetric work array whose size depends on nreduce

• pSync: fixed-size symmetric array for synchronisation flags etc.

 11

Notes

• Active sets

• all PEs in the active set must call the collective routine

• start, start+2stride, start + 2*2stride, start+3*2stride, …, start+(size-1)*2stride

• the triplet (0,0,shmem_n_pes()) specifies all the PEs

• the triplet (1,1,shmem_n_pes()/2) specifies all the odd PEs

• more restrictive than MPI communicators

• Work arrays

• pWrk of size max(nreduce/2+1, _SHMEM_REDUCE_MIN_WRKDATA_SIZE)

• in Fortran: max(nreduce/2+1, SHMEM_REDUCE_MIN_WRKDATA_SIZE)

• pSync of size _SHMEM_REDUCE_SYNC_SIZE

• in Fortran: SHMEM_REDUCE_SYNC_SIZE

Collective synchronisation issues

• pSync must be initialised prior to first call

• SHMEM_SYNC_VALUE (Fortran)

• _SHMEM_SYNC_VALUE (C)

• may require synchronisation between initialisation and first call

• values are reset after the call completes

• or use static initialisation

• Cannot use the same work or sync arrays if two calls can

overlap

• separate by barrier

• toggle between pWrk1 and pWrk2 etc.

Example
shmem_double_sum_to_all(xsum, x, 1, 0, 0, shmem_n_pes(),

 pWrk, pSync);

// Ensure reduction is over before reusing workspace

shmem_barrier_all();

shmem_double_sum_to_all(ysum, y, 1, 0, 0, shmem_n_pes(),

 pWrk, pSync);

…

shmem_double_sum_to_all(xsum, x, 1, 0, 0, shmem_n_pes(),

 pWrk1, pSync1);

// Use different workspace for next reduction

shmem_double_sum_to_all(ysum, y, 1, 0, 0, shmem_n_pes(),

 pWrk2, pSync2);

Strided transfers

• Simple strided patterns can be sent in a single put

• more restrictive than even MPI_Type_vector()

double precision, save :: x(0:N+1, 0:N+1)

// send halo up in the 2nd dimension

CALL SHMEM_DOUBLE_IPUT(x(0,1), x(N+1,1) N+2, N+2, N, pe_up)

• Sends N data elements separated by N+2

• here it picks out x(N+1,1), x(N+1, 2), …, x(N+1, N) at source

• writes to x(0,1), x(0, 2), …, x(0, N) at target on pe_up

• Can specify different strides at target and source

Dynamic memory allocation (C)

• Static allocation in symmetric memory is very restrictive

• In C, use an alternative to malloc
• void *shmalloc(size_t size);

 // allocate reduction workspace

 double *pWrk;

 pWrksize = max(nreduce/2+1, _SHMEM_REDUCE_MIN_WRKDATA_SIZE);

 pWrk = (double *) shmalloc(pWrksize*sizeof(double));

• Must be called by all PEs (a collective routine)

• Usual issues with C multidimensional arrays, e.g. see dosharpen.c

• also have shfree();

Dynamic memory allocation (Fortran)

• Malloc-like routine provided in Fortran

• CALL SHPALLOC(addr, length, errcode, abort)

• addr is a “Cray pointer” to an array; length counted in 32-bit words

• last two arguments relate to behaviour on error (see manual)

• Relatively simple for 1D arrays

double precision :: pWrk(1) ! Dummy declaration

pointer (addr, pWrk) ! Get pointer to array

call shpalloc(addr, 2*pWrksize, errcode, 0)

pWrk(3) = 99

array contains 64-bit doubles

Multidimensional Fortran arrays

• Compiler needs to know leading array dimensions

• cannot just declare dimensions as 1

double precision :: matrix(N,N) ! Dummy declaration

pointer (maddr, matrix) ! Get pointer

…

! before shpalloc, no storage associated with matrix

call shpalloc(maddr, 2*N*N, errcode, 0)

matrix(7,4) = 34.0

• see dosharpen.f90 for real examples

• Also have shpdeallc()

Locks

• Can lock integer variables

• this is a global lock (e.g. stored on PE 0) which could be used for

critical sections etc.

 shmem_set_lock(lock);

 shmem_clear_lock(lock);

 islocked = shmem_test_lock(lock);

• all locks must be initialised to zero

• Can be used to protect access to data

• requires all code to respect association of lock with data

19

Atomic Memory Operations

• Locks can be very heavyweight for simple operations

• e.g. adding one to a remote variable:

get pointer for lock on remote pe

obtain the lock

get value from remote pe

add one to value

put value back

release lock

• OpenSHMEM has atomic memory operations
• e.g., CALL SHMEM_INT4_ADD(target, value, remote_pe)

• atomically adds value to target on remote_pe

• also have increment, swap, fetch-and-add,…

20

Summary

• OpenSHMEM contains all the routines you would expect

of a PGAS library

• A bit confusing in places, often due to history of non-

standard implementations

• May be more portable than languages such as UPC and

coarrays

• does not require compiler support

• Very efficient on Cray platforms

