SINGLE-SIDED PGAS
LIBRARIES

Advanced use of OpenSHMEM

3 WLV E .
< 5,
C (: ;_‘c T -

T A

60 I'N B\)

Outline

- Point-to-point synchronisation

- Collectives

- Strided transfers

- Dynamic symmetric memory allocation

- Locks and atomic updates

epCccC

L
Point-to-point synchronisation

- Barrier synchronisation works in simple cases, but ...

- Performance issues
- will not scale to large numbers of PEs
- overkill in many situations
- e.g. in traffic model, only need to synchronise with neighbours

- May not be sensible to use barriers
- what if communications is only between a few PES?
- why should all PEs wait when most are not communicating?

epCccC

2) Pairwise Model

- Useful when comms pattern is known in advance
- Implemented via library routines and/or flag variables

Process A Process B Process C

START(B) START(B)
POST({A,C})

COMPLETE COMPLETE

- More complicated model
- Closer to message-passing than previous collective approach

- But can be more efficient and flexible |epcc

L
OpenSHMEM idiom

- Origin PE
- perform communication
- write a flag variable to indicate completion

- Remote PE

- wait until flag variable is written
- can then access data (put) or modify buffer (get)

- Seems simple but ...
- how do we make sure the flag arrives after the data (for put)?

- how do we make sure that the flag is reread from memory at the
remote PE and not optimised away by the compiler?

epCccC

Fence and walit

Order of arrival not guaranteed,
e.g. dynamic routing on XC30

-~

put (flag,flagval len, remote pe)

- Origin PE

put (target, source,len, remote pe)
shmem fence ()

Ensures ordering of puts to
remote pe before and after fence

- Remote PE (assume flag is initialised to defaultvalue)

Wait until flag differs
shmem wait(flag, defaultvalue) from defaultvalue

AN epCce

Simple spin-loop may be optimised away |

<, -
< o
=
C
o

L
Notes

- Ensuring initialisation of flag may require synchronisation

- Can also encode information in flag
- e.g. initialise to -1
- write the identifier of the origin PE to flag
- remote pe now knows where the data came from

- Fence works pairwise between PEs
- can also call shmem quiet ()
- waits until all outstanding puts from origin have completed
- not usually needed

< —
< o
=
C
o

- Not sufficient to have volatile flag (in C) |epCC

S N
Flagging requires separate put

- Origin PE! int source[N+1];

initialize data(source, N)
source [N] 1 <« -
put (target, source,N+1, remote pe)

Try to put flag at end of data |

- Remote PE: int target[n+1]; — Locnddataand flag together |

// assume previous initialisation target[N] = -1
shmem wait (target[N], -1)

— Assume arrival of flag means

o |ncorrect| arrival of data

- no guarantee of order of data arrival
- even within a single put call

epCccC

L
Collectives

- Many collective patterns recur in parallel codes
- broadcast
- global sum

- OpenSHMEM provides higher-level routines
- analogous to MPI collectives ...
- ... but harder to use!

- Issues
- user must provide (and maybe initialise) various workspace buffers
- only certain subsets can be specified

- synchronisation issues between calls |epcc

Example: global sum of double

void shmem double sum to all (double *target, double *source,
int nreduce, int PE start, int logPE stride, int PE size,
double *pWrk, long *pSync) ;

- Parameters

- target: output buffer (symmetric storage)
source: input buffer (symmetric storage)
nreduce: number of doubles to reduce (i.e. size of source and target)
PE start, logPE stride, PE_size: active set of PEs taking part
pWrk: symmetric work array whose size depends on nreduce
- pSync: fixed-size symmetric array for synchronisation flags etc.

epCccC

Notes

- Active sets
- all PEs in the active set must call the collective routine
- start, start+2stide start + 2*2stide gtgrt+3+*2stide | start+(size-1)*2stride
- the triplet (0,0,shmem n pes()) specifies all the PEs
- the triplet (1,1, shmem n pes () /2) specifies all the odd PEs
- more restrictive than MPI communicators

- Work arrays

- pWrk Of Sizé max (nreduce/2+1, SHMEM REDUCE MIN WRKDATA SIZE)
- in Fortran: max (nreduce/2+1, SHMEM REDUCE MIN WRKDATA SIZE)

- pSync of size _SHMEM REDUCE_SYNC SIZE

- in Fortran: SHMEM REDUCE SYNC SIZE

L
Collective synchronisation issues

- pSync must be initialised prior to first call
SHMEM SYNC VALUE (Fortran)
- _SHMEM SYNC VALUE (C)

- may require synchronisation between initialisation and first call
- values are reset after the call completes

- Or use static initialisation

- Cannot use the same work or sync arrays if two calls can
overlap

- separate by barrier
- toggle between pWrkl and pWrk2 etc.

epCccC

L
Example

shmem double sum to all(xsum, x, 1, 0, 0, shmem n pes(),
pWrk, pSync);

// Ensure reduction is over before reusing workspace

shmem barrier all();

shmem double sum to all(ysum, y, 1, 0, O, shmem n pes(),
pWrk, pSync);

shmem double sum to all(xsum, x, 1, 0, 0, shmem n pes(),
pWrkl, pSyncl);
// Use different workspace for next reduction

shmem double sum to all(ysum, y, 1, 0, 0O, shmem n pes(),
pWrk2, pSync2);

D
Strided transfers

- Simple strided patterns can be sent in a single put
- more restrictive than even MPI_Type vector ()

double precision, save :: x(0:N+1, O0:N+1)
// send halo up in the 2"°¢ dimension
CALL SHMEM DOUBLE IPUT (x(0,1), x(N+1,1) N+2, N+2, N, pe_up)

- Sends N data elements separated by N+2
- here it picks out x(N+1,1), x(N+1, 2), ..., x(N+1, N) at source
- writes to x(0,1), x(0, 2), ..., X(0, N) at target on pe_up

- Can specify different strides at target and source

epCccC

< —
2 o
=
C
o

Dynamic memory allocation (C)

- Static allocation in symmetric memory Is very restrictive

- In C, use an alternative to malloc
- void *shmalloc(size_t size) ;

// allocate reduction workspace

double *pWrk;
pWrksize = max(nreduce/2+1,_§HMEM;REDUCE_MIN_WRKDATA;SIZE);

pWrk = (double *) shmalloc (pWrksize*sizeof (double)) ;

- Must be called by all PEs (a collective routine)
- Usual issues with C multidimensional arrays, e.g. see dosharpen.c

- also have shfree () ;
epcc

Dynamic memory allocation (Fortran)

- Malloc-like routine provided in Fortran

- CALL SHPALLOC (addr, length, errcode, abort)

- addr is a “Cray pointer” to an array; length counted in 32-bit words
- last two arguments relate to behaviour on error (see manual)

array contains 64-bit doubles |

- Relatively simple for 1D arrays

double precision :: pWrk(l) !'“Dummy declaration
pointer (addr, pWrk)

call shpalloc(addr, 2*pWrksize, errcode, 0)

pWrk (3) = 99 |epCC

! Get pointer to array

Multidimensional Fortran arrays

- Compiler needs to know leading array dimensions
- cannot just declare dimensions as 1

double precision :: matrix(N,N) ! Dummy declaration
pointer (maddr, matrix) ! Get pointer

! before shpalloc, no storage associated with matrix
call shpalloc(maddr, 2*N*N, errcode, 0)
matrix(7,4) = 34.0

- see dosharpen. £90 for real examples

- Also have shpdeallc() |epcc

<, -
2 o
=
C
o

Locks

- Can lock integer variables

- this Is a global lock (e.g. stored on PE 0) which could be used for
critical sections etc.

shmem set lock(lock) ;
shmem clear lock(lock);
islocked = shmem test lock(lock);

- all locks must be initialised to zero

- Can be used to protect access to data
- requires all code to respect association of lock with data

epCccC

Atomic Memory Operations

- Locks can be very heavyweight for simple operations
- e.g. adding one to a remote variable:

get pointer for lock on remote pe
obtain the lock

get value from remote pe

add one to value

put value back

release lock

- OpenSHMEM has atomic memory operations

- .., CALL SHMEM INT4 ADD (target, value, remote pe)
- atomically adds value to target on remote pe

- also have increment, swap, fetch-and-add,...

Summary

- OpenSHMEM contains all the routines you would expect
of a PGAS library

- A bit confusing In places, often due to history of non-
standard implementations

- May be more portable than languages such as UPC and
coarrays
- does not require compiler support

- Very efficient on Cray platforms

epCccC

